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Preface

These notes are written for a one-semester calculus course which meets three
times a week and is, preferably, supported by a computer lab. The course
is designed for life science majors who have a precalculus back ground, and
whose primary interest lies in the applications of calculus. We try to focus
on those topics which are of greatest importance to them and use life science
examples to illustrate them. At the same time, we try of stay mathemat-
ically coherent without becoming technical. To make this feasible, we are
willing to sacri�ce generality. There is less of an emphasis onby hand cal-
culations. Instead, more complex and demanding problems �nd their place
in a computer lab. In this sense, we are trying to adopt several ideas from
calculus reform. Among them is a more visual and less analytic approach.
We typically explore new ideas in examples before we give formal de�nitions.

In one more way we depart radically from the traditional approach to
calculus. We introduce di�erentiability as a local property without using
limits. The philosophy behind this idea is that limits are the a big stum-
bling block for most students who see calculus for the �rst time, and they
take up a substantial part of the �rst semester. Though mathematically
rigorous, our approach to the derivative makes no use of limits, allowing
the students to get quickly and without unresolved problems to this con-
cept. It is true that our de�nition is more restrictive than the ordinary one,
and fewer functions are di�erentiable in this manuscript than in a standard
text. But the functions which we do not recognize as being di�erentiable
are not particularly important for students who will take only one semester
of calculus. In addition, in our opinion the underlying geometric idea of the
derivative is at least as clear in our approach as it is in the one using limits.

More technically speaking, instead of the traditional notion of di�eren-
tiability, we use a notion modeled on a Lipschitz condition. Instead of an
� -� de�nition we use an explicit local (or global) estimate. For a function to
be di�erentiable at a point x0 one requires that the di�erence between the
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function and the tangent line satis�es a Lipschitz condition2 of order 2 in
x � x0 for all x in an open interval around x0, instead of assuming that this
di�erence is o(x � x0).

This approach, which should be to easy to follow for anyone with a back-
ground in analysis, has been used previously in teaching calculus. The au-
thor learned about it when he was teaching assistant (•Ubungsgruppenleiter)
for a course taught by Dr. Bernd Schmidt in Bonn about 20 years ago.
There this approach was taken for the same reason, to �nd a less technical
and e�cient approach to the derivative. Dr. Schmidt followed suggestions
which were promoted and carried out by Professor H. Karcher as innovations
for a reformed high school as well as undergraduate curriculum. Professor
Karcher had learned calculus this way from his teacher, Heinz Schwarze.
There are German language college level textbooks by K•utting and M•oller
and a high school level book by M•uller which use this approach.

Calculus was developed by Sir Isaac Newton (1642{1727) and Gottfried
Wilhelm Leibnitz (1646{1716) in the 17th century. The emphasis was on
di�erentiation and integration, and these techniques were developed in the
quest for solving real life problems. Among the great achievements are the
explanation of Kepler's laws, the development of classical mechanics, and
the solutions of many important di�erential equations. Though very suc-
cessful, the treatment of calculus in those days is not rigorous by nowadays
mathematical standards.

In the 19th century a revolution took place in the development of calcu-
lus, foremost through the work of Augustin-Louis Cauchy (1789{1857) and
Karl Weierstrass (1815{1897), when the modern idea of a function was intro-
duced and the de�nitions of limits and continuous functions were developed.
This elevated calculus to a mature, well rounded, mathematically satisfying
theory. This also made calculus much more demanding. A considerable,
mathematically challenging setup is required (limits) before one comes to
the central ideas of di�erentiation and integration.

A second revolution took place in the �rst half of the 20th century with
the introduction of generalized functions (distributions). This was stimu-
lated by the development of quantum mechanics in the 1920ies and found is
�nal mathematical form in the work of Laurent Schwartz in the 1950ies.

What are we really interested in? We want to introduce the concepts
of di�erentiation and integration. The functions to which we like to apply
these techniques are those of the �rst period. In this sense, we do not

2see page 42 of: A. Zygmund,Trigonometric Series, Vol I, Cambridge University Press,
1959, reprinted with corrections and some additions 1968.
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need the powerful machine developed in the 19th century. Still, we like to
be mathematically rigorous because this is the way mathematics is done
nowadays. This is possible through the use of the slightly restrictive notion
of di�erentiability which avoids the abstraction and the delicate, technically
demanding notions of the second period.

To support the student's learning we rely extensively on examples and
graphics. Often times we accept computer generated graphics without hav-
ing developed the background to deduce their correctness from mathematical
principles.

Calculus was developed together with its applications. Sometimes the
applications were ahead, and sometimes the mathematical theory was. We
incorporate applications for the purpose of illustrating the theory and to
motivate it. But then we cannot assume that the students know already
the subjects in which calculus is applied, and it is also not our goal to teach
them. For this reason the application have to be rather easy or simpli�ed.
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Chapter 0

A Preview

In this introductory course about calculus you will learn about two principal
concepts, di�erentiation and integration. We would like to explain them in
an intuitive manner using examples. In Figure 1 you see the graph of a
function. Suppose it represents a function which describes the size of a
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P(t)

Figure 1: Yeast population as a function of time

population of live yeast bacteria in a bun of pizza dough. Abbreviating
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2 CHAPTER 0. A PREVIEW

time by t (say measured in hours) and the size of the population byP (say
measured in millions of bacteria), we denote this function byP(t). You like
to know at what rate the population is changing at some �xed time, say at
time t0 = 4.

� For a straight line, the rate of change is its slope.

We like to apply the idea of rate of change or slope also to the functionP(t),
although its graph is certainly not a straight line.

What can we do? Let us try to replace the function P(t) by a line L(t),
at least for values of t near t0. The distance between the points (t; P (t))
and (t; L (t)) on the respective graphs is

E(t) = jP(t) � L (t)j:(1)

This is the error which we make by usingL(t) instead of P(t) at time t. We
will require that this error is \small" in a sense which we will precise soon.
If a line L(t) can be found so that the error is small for all t in some open
interval around t0, then we call L (t) the tangent line to the graph of P at
t0. The slope of the lineL(t) will be called the slope of the graph ofP(t) at
the point ( t0; P(t0)), or the rate of change ofP(t) at the time t = t0.
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Figure 2: Zoom in on a point.
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Figure 3: Graph & tangent line

Let us make an experiment. Put the graph under a microscope or,
on your graphing calculator, zoom in on the point (4; P(4)) on the graph.
This process works for the given example and most other functions treated
in these notes. You see the zoom picture in Figure 2. Only under close
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scrutiny, you detect that the graph is not a line, but still bent. So, let us
ignore this bit of bending and pretend that the shown piece of graph is a
line. Actual measurements in the picture let you suggest that the slope of
that line should be about � 70. This translates into the statement that the
population of the live bacteria decreases at a rate of roughly 70 million per
hour. In Figure 3 we drew the actual tangent line to the graph of P(t) at
t = 4. A calculation based on the expression forP(t), which you should be
able to carry out only after having studied a good part of this manuscript,
shows that the value of the slope of this line is about� 67:0352. You may
agree, that the geometric determination of the rate of change was quite
accurate.

To some extent, it is up to us to decide the meaning of the requirement

� j P(t) � L (t)j is small for all t near t0.

One possible requirement1, which it technically rather simple and which
we will use, is:

� The exists a positive numberA and an open interval (a; b) which con-
tains t0, such that

jP(t) � L (t)j � A(t � t0)2 for all t in (a; b).(2)

The inequality in (2) dictates how close we require the graph ofP(t)
to be to line L(t). There may, or there may not, exist an interval and a
number A such that the inequality holds for an appropriate line. If the line,
the interval, and A exist, then the line is unique. Its slope is called the
derivative of P(t) at t0, it is denoted by P0(t0), and we say that P(t) is
di�erentiable at t0. Remembering that the rate of change of lineL(t) is its
slope, we say

� If P(t) is a function which is di�erentiable at t0, then P0(t0) is, by
de�nition, the rate at which P(t) changes whent = t0.

1In a standard treatment a weaker condition, which depends on the notion of limits,
is imposed at this point. Our choice of requirement and our decision to avoid limits is
based on the desire to keep the technicalities of the discussion at a minimum, and to make
these notes as accessible as possible. Di�erent interpretations of the word `small' lead to
di�erent ideas about di�erentiability. More or fewer functions will be di�erentiable. The
notion of the derivative, if it exists, is not e�ected by the choice of meaning for the word.
On the other hand, the interpretation of the word `small' has to imply the uniqueness of
the derivative.



4 CHAPTER 0. A PREVIEW

In due time we will explain all of this in more detail. You noticed that
we need the idea of a line. When you look at (2) and see the square of the
variable you can imagine that we need parabolas. So we review and elabo-
rate on lines and parabolas in Chapter 1. We also introduce the, possibly,
two most important functions in life science applications, the exponential
function and the logarithm function.

Chapter 2 is devoted to the precise de�nition of the derivative and the
exploration of related ideas. Relying only on the de�nition, we calculate the
derivative for some basic functions. Then we establish the major rules of
di�erentiation, which allow us to di�erentiate many more functions.

Chapter 3 is devoted to applications. We investigate the ideas of mono-
tonicity and concavity and discuss the 1st and 2nd derivative tests for �nd-
ing extrema of functions. In many applications of calculus one proceeds
as follows. One �nds a mathematical formulation for a problem which one
encounters in some other context. One formulates the problem so that its
solution corresponds to an extremum of its mathematical formulation. Then
one resorts to mathematical tools for �nding the extrema. Having found the
solution for the mathematically formulated problem one draws conclusions
about the problem one started out with.

E.g., look at a drop of mercury. Physical principles dictate that the
surface area be minimized. You can derive mathematically that the shape
of a body which minimizes the surface area, given a �xed volume, is a ball.
This is roughly what you see. There is a slight perturbation due to the e�ect
of gravity. This e�ect is much greater if you take a drop of water, for which
the internal forced are not as strong as the ones in a drop of mercury.

Often calculus is used to solve di�erential equations. These are equations
in which a relation between a function and its rate of change is given2. The
unknown in the equation is the function. E.g., for some simple population
models the equation (Malthusian Law)

P0(t) = aP(t)

is asserted. The rate at which the population changes (P0(t)) is proportional
to the size of the population (P(t)). We solve this and some other population
related di�erential equations. We will use both, analytical and numerical
means.

The second principal concept is the one of the integral. Suppose you need
to take a certain medication. Your doctor prescribes you a skin patch. Let

2In more generality, the relation may also involve the independent variable and higher
derivatives.
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1 2 3 4
t

-0.2

0.2

0.4

0.6

0.8

R(t)

Figure 4: Constant Rate
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Figure 5: Amount absorbed

us say that the rate at which the medication is absorbed through the skin
is a function R(t), where R stands for rate and t for time. It is fair to say,
that over some period of timeR(t) is constant, say :3 mg/hr. The situation
is graphed in Figure 4. Over a period of three hours your body absorbs
:9 mg of the medication. We multiplied the rate at which the medication
is absorbed with the length of time over which this happened. Assuming
that you applied the patch at time t = 0, the three hours would end at
time t = 3. An interpretation of the total amount of medication which is
absorbed betweent = 0 and t = 3 is the area of the rectangle bounded by
the line t = 0, the line t = 3, the x-axis, and the graph of the function
R(t) = :3. Its side lengths are 3 and:3. In Figure 5 you see the function
A(t) = :3t. It tells you, as a function of time, how much medication has
been absorbed.

Suppose next that the medication is given orally in form of a pill. As
the pill dissolves in the stomach, it sets the medication free so that your
body can absorb it. The rate at which the medication is absorbed is pro-
portional to the amount dissolved. As time progresses, the medication is
moved through your digestive system, and decreasing amounts are available
to being absorbed. A function which could represent the rate of absorption
as a function of time is shown in Figure 6. We denote it once more byR(t).
Again you may want to �nd out how much medication has been absorbed
within a given time, say within the �rst 4 hours after swallowing the pill.
Set the time at which you took the pill as time t = 0. It should be reason-
able to say (in fact a strong case can be made for this) that the amount of
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Figure 6: Time dependent rate
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Figure 7: Amount absorbed

medication which has been absorbed betweent = 0 and t = T is the area
under the graph of R(t) between t = 0 and t = T. We denote this function
by A(T). Using methods which you will learn in this course, we found the
function A. The graph is shown in Figure 7. You may �nd the value for
A(4) in the graph. A numerical calculation yields A(4) = 0 :6735.

More generally, one may want to �nd the area under the graph of a
function f (x) between x = a and x = b. To make sense out of this we �rst
need to clarify what we mean when we talk about the area of a region, in
particular if the region is not bounded by straight lines. Next we need to
determine the areas of such regions. In fact, �nding the area between the
graph of a non-negative functionf and the x-axis betweenx = a and x = b
means to integrate f from a to b. Both topics are addressed in the chapter
on integration.

The ideas of di�erentiation and integration are related to each other. If
we di�erentiate the function shown in Figure 7 at some time t, then we get
the function in Figure 6 at t. You will understand this after the discussion
in Section 4.6. In this section we also discuss the Fundamental Theorem of
Calculus, which is our principal tool to calculate integrals.

The two basic ideas of the rate of change of a function and the area
below the graph of a function will be developed into a substantial body
of mathematical results that can be applied in many situations. You are
expected to learn about them, so you can understand other sciences where
they are applied.



Chapter 1

Some Background Material

Introduction

In this chapter we review some basic functions such as lines and parabolas.
In addition we discuss the exponential and logarithm functions for arbitrary
bases. In a prior treatment you may only have been exposed to special cases.

Remark 1. Calculus (in one variable) is about functions whose domain and
range are subsets of, or typically intervals in, the real line. So we will not
repeat this assumption in every statement we make, unless we really want
to emphasize it.

1.1 Lines

Lines in the plane occur in several contexts in these notes, and they are
fundamental for the understanding of almost everything which follows. A
typical example of a line is the graph of the function

y(x) = 2 x � 3(1.1)

drawn in Figure 1.1. More generally, one may consider functions of the form

y(x) = mx + b(1.2)

where m and b are real numbers. Their graphs are straight lines with slope
m and y-intercept (the point where the line intersects the y axis) b. In the
example the slope of the line ism = 2 and the y-intercept is b = � 3. Even
more generally than this, we have the following de�nition.

7



8 CHAPTER 1. SOME BACKGROUND MATERIAL

De�nition 1.1. A line consists of the points(x; y) in the x � y-plane which
satisfy the equation

ax + by = c(1.3)

for some given real numbersa, b and c, where it is assumed thata and b are
not both zero.

If b = 0, then we can write the equation in the form x = c=a, and this
means that the solutions of the equation form a vertical line. The value for
x is �xed, and there is no restriction on the value of y. Lines of this kind
cannot be obtained if the line is speci�ed by an equation as in (1.2). The
line given by the equation 2x = 3 is shown as the solid line in Figure 1.2.

If a = 0, then we can write the equation in the form y = c=b, and this
means that the solutions of the equation form a horizontal line, the value
for y is �xed, and there is no restriction on the value of x. The line given
by the equation 2y = 5 is shown as the dashed line in Figure 1.2.

If b 6= 0, then ax + by = c translates into y = � a
bx + c

b, and the equation
describes a line with slope� a=band y-intercept c=b.

-2 -1 1 2
x

-6

-4

-2

y

Figure 1.1: y(x) = 2 x � 3

-1 1 2 3
x

-1

1

2

3

y

Figure 1.2: 2x = 3 & 2 y = 5

Exercise 1. Sketch the lines 5x = 10 and 3y = 5.

Exercise 2. Sketch and determine the y-intercept and slope of the lines
3x + 2y = 6 and 2x � 3y = 8.
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In application, we are often given the slope of a line and one of its points.
Suppose the slope ism and the point on the line is (x0; y0). Then the line
is given by the equation

y = m(x � x0) + y0:

Using functional notation, the line is the graph of the function

y(x) = m(x � x0) + y0:(1.4)

To see this, observe thaty(x0) = y0, so that the point ( x0; y0) does indeed
lie on the graph. In addition, you can rewrite the expression for the function
in the form y(x) = mx + ( � mx0 + b) to see that it describes a line with
slopem. Its y-intercept is � mx0 + b.

Example 1.2. The line with slope 3 through the point (1; 2) is given by
the equation

y = 3( x � 1) + 2 : �

Occasionally, we want to �nd the equation of a line through two distinct,
given points (x0; y0) and (x1; y1). Assume that x0 6= x1, otherwise the line
is vertical. Set

y(x) =
y1 � y0

x1 � x0
(x � x0) + y0:(1.5)

This is the point slope formula for a line through the point ( x0; y0) with

slope
h

y1� y0
x1� x0

i
. You should check that y(x1) = y1. This means that (x1; y1)

is also a point on the line. In slope intercept form, the equation of the line
is:

y(x) =
�

y1 � y0

x1 � x0

�
x +

�
�

y1 � y0

x1 � x0
x0 + y0

�
:

Example 1.3. Find the equation of the line through the points (x0; y0) =
(1; � 1) and (x1; y1) = (3 ; 4).

Putting the points into the equation of the line, we �nd

y(x) =
�

4 � (� 1)
3 � 1

�
(x � 1) + ( � 1) =

5
2

x �
7
2

: �

The line is shown in Figure 1.3. �
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1 2 3
x
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y

Figure 1.3: Line through (1; � 1) & (3; 4)

Summarizing the three examples, we ended up with three di�erent ways
to write down the equation of a non-vertical line, depending on the data
which is given to us:

� Intercept-Slope Formula: We are given they-intercept b and slope
m of the line. The equation for the line is

y = mx + b:

� Point-Slope Formula: We are given a point (x0; y0) on the line and
its slope m. The equation of the line is

y = m(x � x0) + y0:

� Two-Point Formula: We are given two points (x0:y0) and (x1; y1)
with di�erent x-coordinate on the line. The equation of the line is

y(x) =
y1 � y0

x1 � x0
(x � x0) + y0:



1.1. LINES 11

Exercise 3. Suppose a line has slope 2 and (2; 1) is a point on the line.
Using the point (2; 1), write down the point slope formula for the line and
convert it into the slope intercept formula. Find the x and y-intercept for
the line and sketch it.

Exercise 4. Find the point-slope and intercept-slope formula of a line with
slope 5 through the point (� 1; � 2).

Exercise 5. A line goes through the points (� 1; 1) and (2; 5). Find the two
point and slope intercept formula for the line. What is the slope of the line?
Where does the line intersect the coordinate axes? Sketch the line.

Intersections of Lines

Let us discuss intersections of two lines. Consider the lines

l1 : ax + by = c & l2 : Ax + By = C:

They intersect in the point ( x0; y0) if this point satis�es both equations. I.e.,
to �nd intersection points of two lines we have to solve two equations in two
unknowns simultaneously.

Example 1.4. Find the intersection points of the lines

2x + 5y = 7 & 3 x + 2y = 5 :

Apparently, both equations hold if we set x = 1 and y = 1. This means
that the lines intersect in the point (1 ; 1). As an exercise you may verify
that (1 ; 1) is the only intersection point for these two lines. �

The lines ax + by = c and Ax + By = C are parallel to each other if

Ab = aB;(1.6)

and in this case they will be identical, or they will have no intersection point.

Example 1.5. The lines

2x + 5y = 7 & 4 x + 10y = 14

are identical. To see this, observe that the second equation is just twice
the �rst equation. A point ( x; y) will satisfy one equation if and only if it
satis�es the other one. A point lies on one line if and only if it lies on the
other one. So the lines are identical. �
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Example 1.6. The lines

2x + 5y = 7 & 4 x + 10y = 15

are parallel and have no intersection point.
To see this, observe that the �rst equation, multiplied with 2, is 4 x +

10y = 14. There are no numbersx and y for which 4x + 10y = 14 and
4x + 10y = 15 at the same time. Thus this system of two equations in two
unknowns has no solution, and the two lines do not intersect. �

To be parallel also means to have the same slope. If the lines are not
vertical ( b 6= 0 and B 6= 0), then the condition says that the slopes � a=bof
the line l1 and � A=B of the line l2 are the same. If both lines are vertical,
then we have not assigned a slope to them.

If Ab 6= aB, then the lines are not parallel to each other, and one can
show that they intersect in exactly one point. You saw an example above.

If Aa = � bB, then the lines intersect perpendicularly. Assuming that
neither line is vertical (b 6= 0 and B 6= 0), the equation may be written as

a
b

�
A
B

= � 1:

This means that the product of the slopes of the lines (� a=b is the slope
of the �rst line and � A=B the one of the second line) is� 1. The slope
of one line is the negative reciprocal of the slope of the other line. This is
the condition which you have probably seen before for two lines intersecting
perpendicularly.

Example 1.7. The lines

3x � y = 1 & x + 3y = 7

have slopes 3 and� 1=3, resp., and intersect perpendicularly in (x; y) =
(1; 2). �

Exercise 6. Find the intersection points of the lines

l1(x) = 3 x + 4 & l2(x) = 4 x � 5:

Sketch the lines and verify your calculation of the intersection point.
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Exercise 7. Determine the slope for each of the following lines. For each
pair of lines, decide whether the lines are parallel, perpendicular, or neither.
Find all intersection points for each pair of lines.

l1 : 3x � 2y = 7

l2 : 6x + 4y = 6

l3 : 2x + 3y = 3

l4 : 6x � 4y = 5

Exercise 8. Suppose a linel(x) goes through the point (1; 2) and intersects
the line 3x � 4y = 5 perpendicularly. What is the slope of the line? Find
its slope point formula (use (1; 2) as the point on the line) and its slope
intercept formula. Sketch the line.

1.2 Parabolas and Higher Degree Polynomials

A parabola is the graph of a degree 2 polynomial, i.e., a function of the form

y(x) = ax2 + bx + c(1.7)

where a, b, and c are real numbers anda 6= 0. Depending on whether a is
positive or negative the parabola will be open up- or downwards. Abusing
language slightly, we say thaty(x) is a parabola. We will study parabolas in
their own right, and they will be of importance to us in one interpretation
of the derivative.

Typical examples of parabolas are the graphs of the functions

p(x) = x2 � 2x + 3 and q(x) = � x2 � x + 1

shown in Figures 1.4 and 1.5. The �rst parabola is open upwards, the second
one downwards.

The x-intercepts of the graph of p(x) = ax2 + bx+ c are also calledroots
or the zerosof p(x). To �nd them we have to solve the quadratic equation

ax2 + bx + c = 0 :

The solutions of this equation are found with the help of the quadratic
formula

p(x) = 0 if and only if x =
1
2a

h
� b�

p
b2 � 4ac

i
:(1.8)

The expressionb2 � 4ac under the radical is referred to as thediscriminant
of the quadratic equation. There are three cases to distinguish:
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Figure 1.4: y = x2 � 2x + 3
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Figure 1.5: y = � x2 � x + 1

� p(x) has two distinct roots if the discriminant is positive.

� p(x) has exactly one root if the discriminant is zero.

� p(x) has no (real) root if the discriminant is negative.

Example 1.8. Find the roots of the polynomial p(x) = 3 x2 � 5x + 2.
According to the quadratic formula

3x2 � 5x + 2 = 0 if and only if x =
1
6

�
5 �

p
25 � 24

�
:

So the roots ofp(x) are 1 and 2=3. �

Exercise 9. Find the roots of the following polynomials.

(1) p(x) = x2 � 5x + 2

(2) q(x) = 2 x2 + 3x � 5

(3) r (x) = 2 x2 � 12x + 18

(4) s(x) = � x2 + 5x � 7

Let us �nd the intersection points for two parabolas, say

p(x) = a1x2 + b1x + c1 and q(x) = a2x2 + b2x + c2:

To �nd their intersection points we equate p(x) and q(x). In other words,
we look for the roots of

p(x) � q(x) = ( a1 � a2)x2 + ( b1 � b2)x + ( c1 � c2):

The highest power ofx in this equation is at most 2 (this happens if (a1 �
a2) 6= 0), and this means that it has at most two solutions.
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Figure 1.6: Intersecting parabolas

Example 1.9. Find the intersection points of the parabolas

p(x) = x2 � 5x + 2 and q(x) = 2 x2 + 3x � 5:

We need to �nd the solutions of the equation

p(x) � q(x) = � x2 � 8x + 7 = 0 :

According to the quadratic equation, the solutions are

x = �
1
2

[8 �
p

64 + 28] = � 4 �
p

23:

So the parabolas intersect atx = � 4 �
p

23. You see the parabolas in
Figure 1.6, and you can check that our calculation is correct. �

Exercise 10. Find the intersection points for each pair of parabolas from
Exercise 9. Graph the pairs of parabolas and verify your calculation.

We will study how parabolas intersect in more detail in Section 2.5.
Right now we like to turn our attention to a di�erent matter. In Section 1.1
we used the slope-intercept and the point-slope formula to write down the
equation of a line. The equation

y = mx + b = mx1 + bx0(1.9)
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expressesy in powers ofx. In the last term in (1.9) we added some redundant
notation to make this point clear. When we write down the point slope
formula of a line with slope m through the point ( x0; y0),

y = m(x � x0) + y0 = m(x � x0)1 + y0(x � x0)0;

then we expressedy in powers of (x � x0). The mathematical expression for
this is that we expandedy in powers of (x � x0). We like to do the same for
higher degree polynomials. We start out with an example.

Example 1.10. Expand the polynomial

y(x) = x2 + 5x � 2(1.10)

in powers of (x � 2).
Our task is to �nd numbers A, B , and C, such that

y(x) = A(x � 2)2 + B (x � 2) + C:(1.11)

Expanding the expression in (1.11) and gathering terms according to their
power of x we �nd

y(x) = A(x2 � 4x + 4) + B (x � 2) + C

= Ax 2 + ( � 4A + B )x + (4 A � 2B + C)

Two polynomials are the same if and only if their coe�cients are the same.
So, comparing the coe�cients of y in (1.10) with those in our last expression
for it, we obtains equations for A, B , and C:

A = 1

� 4A + B = 5

4A � 2B + C = � 2

These equations can be solved consecutively,A = 1, B = 9, and C = 12. So

y(x) = ( x � 2)2 + 9( x � 2) + 12:

We expandedy(x) in powers of (x � 2). �

Working through this example with general coe�cients, we come up with
the following formula:

y(x) = ax2 + bx + c = A(x � x0)2 + B (x � x0) + C:(1.12)
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where

A = a

B = 2ax0 + b

C = ax2
0 + bx0 + c = y(x0)

(1.13)

In fact, given any polynomial p(x) and any x0, one can expandp(x) in
powers of (x � x0). The highest power of x will be the same as the highest
power of (x � x0). The process is the same as above, only it gets lengthier.
On the computer you can do it in a ji�y.

Exercise 11. Expand y(x) = x2 � x + 5 in powers of (x � 1).

Exercise 12. Expand y(x) = � x2 + 4x + 1 in powers of (x + 2).

Exercise 13. Expand y(x) = x3 � 4x2 + 3x � 2 in powers of (x � 1).

Exercise 14. Expand p(x) = x6 � 3x4 + 2x3 � 2x + 7 in powers of (x + 3).

What is the purpose of expanding a parabola in powers of (x � x0)? Let
us look at an example and see what it does for us. Consider the parabola

p(x) = 2 x2 � 5x + 7 = 2( x � 2)2 + 3( x � 2) + 5 :

The last two terms in the expansion form a line:

l (x) = 3( x � 2) + 5 :

This line has an important property:

jp(x) � l (x)j = 2( x � 2)2 and in particular, p(2) = l(2):(1.14)

In the sense of the estimate suggested in (2) in the Preview, we found a line
l(x) which is close to the graph ofp(x) near x = 2. The constant A in (2)
may be taken as 2 (or any number larger than 2), and the estimate holds
for all x in ( �1 ; 1 ) (or any interval).

Exercise 15. For each of the following parabolasp(x) and points x0, �nd
a line l(x) and a constant A, such that jp(x) � l (x)j � A(x � x0)2.

1. p(x) = 3 x2 + 5x � 18 and x0 = 1.

2. p(x) = � x2 + 3x + 1 and x0 = 3.

3. p(x) = x2 + 3x + 2 and x0 = � 1.



18 CHAPTER 1. SOME BACKGROUND MATERIAL

Let us do a higher degree example:

Example 1.11. Let p(x) = x4 � 2x3 + 5x2 � x + 3 and x0 = 2. Find a
line l(x) and a constant A, such that jp(x) � l (x)j � A(x � x0)2 for all x
in the interval I = (1 ; 3). (Note that the open interval I contains the point
x0 = 2.)

Expanding p(x) in powers of (x � 2) we �nd

p(x) = ( x � 2)4 + 6( x � 2)3 + 17(x � 2)2 + 27(x � 2) + 21:

Set l(x) = 27( x � 2) + 21. Then

jp(x) � l (x)j =
�
�(x � 2)4 + 6( x � 2)3 + 17(x � 2)2

�
�

=
�
�(x � 2)2 + 6( x � 2) + 17

�
� (x � 2)2

� (1 + 6 + 17)( x � 2)2

� 24(x � 2)2:

In the calculation we used the triangle inequality ((5.9) in Section 5.2 to get
the �rst inequality. If x 2 (1; 3), then jx � 2j < 1 and jx � 2jk < 1 for all
k � 1. This helps you to verify the second inequality. So, withA = 24 and
l(x) = 27( x � 2) + 21, we �nd that

jp(x) � l (x)j � A(x � x0)2

for all x 2 (1; 3). �

Exercise 16. Let p(x) = 2 x4 + 5x3 � 5x2 � 3x + 7 and x0 = 5. Find a line
l(x) and a constant A, such that jp(x) � l (x)j � A(x � x0)2 for all x in the
interval I = (4 ; 6).

Remark 2. The general recipe (algorithm) for what we just did is as fol-
lows. Consider a polynomial

p(x) = cn xn + cn� 1xn� 1 + � � � + c1x + c0:

Pick a point x0, and expandp(x) in powers of x0:

p(x) = Cn(x � x0)n + Cn� 1(x � x0)n� 1 + � � � + C1(x � x0) + C0:

This can always be done, and we learned how to do this. Set

l(x) = C1(x � x0) + C0:
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Then

jp(x) � l (x)j =
�
�Cn(x � x0)n� 2 + � � � + C3(x � x0) + C2

�
� (x � x0)2

�
�
� jCn(x � x0)n� 2j + � � � + jC3(x � x0)j + jC2j

�
� (x � x0)2

� (jCn j + jCn� 1j + � � � + jC2j) (x � x0)2

for all x 2 I = ( x0 � 1; x0 + 1). The details of the calculation are as follows.
To get the equation, we took jp(x) � l (x)j and factored out (x � x0)2. To
get the �rst inequality we repeatedly used the triangle inequality, see (5.9)
in Section 5.2. The last inequality follows as (x � x0)k < 1 if k � 1.

In summary, for l (x) = C1(x � x0) + C0 and A = ( jCn j + � � � + jC2j) we
have seen that

jp(x) � l (x)j � A(x � x0)2

for all x 2 (x0 � 1; x0 + 1). In the sense of our preview, and the upcoming
discussion about derivatives, this means

� The rate of change ofp(x) at the point ( x0; p(x0)) is C1, the slope of
the line l(x).

Exercise 17. For each of the following polynomialsp(x) and points x0, �nd
the rate of change ofp(x) when x = x0.

1. p(x) = x2 � 7x + 2 and x0 = 4.

2. p(x) = 2 x3 + 3 and x0 = 1.

3. p(x) = x4 � x3 + 3x2 � 8x + 4 and x0 = � 1.

Remark 3. You may have noticed, that we began to omit labels on the
axes of graphs. One reason for this is, that we displayed more than one
function in one graph, and that means that there is no natural name for the
variable associated to the vertical axis.

Our general rule is, that we use the horizontal axis for the indepen-
dent variable and the vertical one for the dependent one1. This is the rule
which almost any mathematical text abides by. In some sciences this rule is
reversed.

1If you like to review the terms independent and dependent variable, then we suggest
that you read Section 5.3 on page 268.
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1.3 The Exponential and Logarithm Functions

Previously you have encountered the expressionax , where a is a positive
real number and x is a rational number. E.g.,

102 = 100; 101=2 =
p

10; and 10� 1 =
1
10

In particular, if x = n=m and n and m are natural numbers, then ax is
obtained by taking the n-th power of a and then the m-root of the result.
You may also say that y = am=n is the unique solution of the equation

yn = am:

By convention, a0 = 1. To handle negative exponents, one setsa� x = 1=ax .

Exercise 18. Find exact values for
�

1
2

� � 2

43=2 3� 1=2 25� 3=2:

Exercise 19. Use your calculator to �nd approximate values for

34:7 5� :7 8:1 :1� :3:

Until now you may not have learned about irrational (i.e., not rational)
exponents as in expressions like 10� or 10

p
2. The numbers � and

p
2 are

irrational. We like to give a meaning to the expressionax for any positive
number a and any real numberx. A new idea is required which does not only
rely on arithmetic. First, recall what we have. If a > 1 (resp., 0< a < 1)
and x1 and x2 are two rational numbers such that x1 < x 2, then ax1 < a x2

(resp., ax1 > a x2 ). We think of f (x) = ax as a function in the variable x.
So far, this function is de�ned only for rational arguments (values of x).
The function is monotonic. More precisely, it is increasing if a > 1 and
decreasing if 0< a < 1.

Theorem-De�nition 1.12. Let a be a positive number,a 6= 1 . There
exists exactly one monotonic function, called the exponential function with
basea and denoted byexpa(x), which is de�ned for all real numbers x such
that expa(x) = ax wheneverx is a rational number. Furthermore, ax > 0
for all x, and so we use(0; 1 ) as the range2 of the exponential function
expa(x).

2You may want to review the notion of the range of a function in Section 5.3 on
page 268.
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We will prove this theorem in Section 4.11. This will be quite easy once
we have more tools available. Right now it would be a rather distracting
tour-de-force. Never-the-less, the exponential function is of great impor-
tance and has many applications, so that we do not want to postpone its
introduction. It is common, and we will follow this convention, to use the
notation ax for expa(x) also if x is not rational.

You can see the graph of an exponential function in Figures 1.7 and
1.8. We useda = 2 and two di�erent ranges for x. In another graph,
see Figure 1.9, you see the graph of an exponential function with a base
a smaller than one. We can alloweda = 1 as the base for an exponential
function, but 1 x = 1 for all x, and we do not get a very interesting function.
The function f (x) = 1 is just a constant function which does not require
such a fancy introduction.
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Figure 1.7: 2x for x 2 [� 1; 1:5]
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Figure 1.8: 2x for x 2 [� 1; 9:5]

Let us illustrate the statement of Theorem 1.12. Suppose you like to
�nd 2 � . You know that � is between the rational numbers 3:14 and 3:15.
Saying that exp2(x) is increasing just means that

23:14 < 2� < 23:15:

Evaluating the outer expressions in this inequality and rounding them down,
resp., up, places 2� between 8:81 and 8:88. In fact, if r 1 and r2 are any
two rational numbers, r 1 < � < r 2, then due to the monotonicity of the
exponential function,

2r 1 < 2� < 2r 2 :
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The theorem asserts that there is at least one real number 2� which satis�es
these inequalities, and the uniqueness part asserts that there is only one
number with this property, making 2 � unique.
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Figure 1.9: (1=2)x

The arithmetic properties of the exponential function, also called the
exponential laws, are collected in our next theorem. The theorem just says
that the exponential laws, which you previously learned for rational expo-
nents, also hold in the generality of our current discussion. You will derive
the exponential laws from the logarithm laws later on in this section as an
exercise.

Theorem 1.13 (Exponential Laws). For any positive real numbera and
all real numbers x and y

a0 = 1

a1 = a

axay = ax+ y

ax=ay = ax� y

(ax )y = axy

Some of the exponential laws can be obtained easily from the other ones.
The second one holds by de�nition. Assuming the third one, one may deduce
the �rst and third one. You are invited to carry out these deductions in the
following exercises.
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Exercise 20. Show: If a 6= 0, the a0 = 1.

Although we did not consider an exponential function with base 0, it
is common to set 00 = 1. This is convenient in some general formulas. If
x 6= 0, then 0x = 0.

Exercise 21. Assumea0 = 1 and axay = ax+ y. Show ax=ay = ax� y.

We need another observation about exponential functions, the proof of
which we also postpone for a while (see Section 4.11).

Theorem 1.14. Let a and b be positive real numbers anda 6= 1 . There
exists a unique (i.e., exactly one) real numberx such that

ax = b:

You may make the uniqueness statement in the theorem more explicit by
saying:

If ax = ay; then x = y; or equivalently, if x 6= y; then ax 6= ay:(1.15)

Let us consider some examples to illustrate the statement in the theorem.
We assume that a and b are positive numbers and that a 6= 1. View the
expression

ax = b(1.16)

as an equation inx. For a given a and b we want to (and the theorem says
that we can) �nd a number x, so that the equation holds. E.g. if

a = 2 and b = 8 ; then x = 3 :
a = 4 and b = 2 ; then x = 1=2:
a = 1=2 and b = 2 ; then x = � 1:
a =

p
2 and b = �; then x = 3 :303:

The value for x in the last example was obtained from a calculator and is
rounded o�.

Exercise 22. Solve the equationax = b if

(1) (a; b) = (10 ; 1000)

(2) (a; b) = (1000; 10)

(3) (a; b) = (2 ; 4)

(4) (a; b) = (4 ; 2)

(5) (a; b) = (2 ; 1=4)

(6) (a; b) = (100 ; :1):
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For a given a (a > 0 and a 6= 1) and b > 0 we denote the unique solution
of the equation in (1.16) by loga(b). In other words:

De�nition 1.15. If a and b are positive numbers,a 6= 1 , then loga(b) is the
unique number, such that

aloga (b) = b or expa(loga(b)) = b:(1.17)

Here are some sample logarithms for the base 2:

log2 4 = 2 log2 16 = 4 log2(1=8) = � 3 log2

p
2 = 1=2

and for the base 10:

log10 1 = 0 log10 100 = 2 log10(1=10) = � 1:

Your calculator will give you good approximations for at least log10(x) for
any x > 0.

Exercise 23. Find logarithms for the base 10:

(1) log10 5

(2) log10 100

(3) log10 �

(4) log10(1=4)

(5) log10 25

(6) log10 1:

Mathematically speaking, we just de�ned a function. Let us express it
this way.

De�nition 1.16. Let a be a positive number,a 6= 1 . Mapping b to loga(b)
de�nes a function, called the logarithm function with base a. It is de�ned
for all positive numbers, and its range is the set of real numbers.

Part of the graph of log2(x) is shown in Figure 1.10. In Figure 1.11 you
see the graph of a logarithm function with basea less than 1.

We also like to see for every real numbery that

loga(ay) = y or loga(expa(y)) = y:(1.18)

Setting b = ay in (1.17) we have that

aloga (ay ) = ay:

The statement in (1.15) says that loga(ay) = y.
Taken together, (1.17) and (1.18) say that for everya > 0, a 6= 1, we

have

aloga (y) = y for all y > 0 and

loga(ax ) = x for all x 2 (�1 ; 1 ).

This just means that



1.3. THE EXPONENTIAL AND LOGARITHM FUNCTIONS 25

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

1.5
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Figure 1.11: log(1=2) (x)

Theorem 1.17. The exponential function expa(x) = ax and the logarithm
function loga(y) are inverses3 of each other.

Using the same bases, we obtain the graph of the logarithm function by
reecting the one of the exponential function at the diagonal in the Cartesian
plane. This is the general principle by which the graph of a function and its
inverse are related. The role of the independent and dependent variables,
and with this the coordinate axes, are interchanged. The graph of log2(x),
see Figure 1.10 is a reection of the one in Figure 1.7. When you compare
the two graphs, you need to take into account that the parts of the function
shown are not quite the same and that there is a di�erence in scale. Once
you make these adjustments you will see the relation.

Theorem 1.18. Let a be a positive number,a 6= 1 . The logarithm function
loga is monotonic. It is increasing if a > 1 and decreasing ifa < 1. Sup-
pose u and v are positive numbers. If loga(u) = log a(v), then u = v, and
equivalently, if u 6= v, then loga(u) 6= log a(v).

Proof. It is a general fact, that the inverse of an increasing function is in-
creasing, and the inverse of a decreasing function is decreasing (see Propo-
sition 5.25 on page 291). So the monotonicity statements for the logarithm
functions follow from the monotonicity properties of the exponential func-
tions (see Theorem 1.14) because these functions are inverses of each other.

3A quick review of the idea of inverse functions is given in Section 5.6 on page 286,
and you are encouraged to read it in case you forgot about this concept.
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Furthermore, loga(u) = log a(v) implies that

u = aloga (u) = aloga (v) = v:

This veri�es the remaining claim in the theorem.

Corresponding to the exponential laws in Theorem 1.13 on page 22 we
have the laws of logarithms. Some parts of the theorem are proved in Sec-
tion 4.11. The other parts are assigned as exercises below.

Theorem 1.19 (Laws of Logarithms). For any positive real numbera 6=
1, for all positive real numbers x and y, and any real numberz

loga(1) = 0

loga(a) = 1

loga(xy) = log a(x) + log a(y)

loga(x=y) = log a(x) � loga(y)

loga(xz) = z loga(x)

Because the exponential and logarithm functions are inverses of each
other, their rules are equivalent. In the following exercises you are asked to
verify this.

Exercise 24. Assume the exponential laws and deduce the laws of loga-
rithms.

Exercise 25. Assume the laws of logarithms and deduce the exponential
laws.

To show you how to solve this kind of problem, we deduce one of the
exponential laws from the laws of logarithms. Observe that

loga(axay) = log a(ax ) + log a(ay) = x + y = log a(ax+ y):

The �rst equation follows from the third equation in Theorem 1.19, and the
remaining two equations hold because of the way the logarithm function
is de�ned. Comparing the outermost expressions, we deduce from Theo-
rem 1.18 the third exponential law:

axay = ax+ y:

Exercise 26. Assume that

loga 1 = 0 and loga(xy) = log a(x) + log a(y):

Show that

loga(x=y) = log a(x) � loga(y):
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The Euler number e as base

You may think that f (x) = 10 x is the easiest exponential function, at least
you have no problems to �nd 10n if n is an integer (a whole number). Later
on you will learn to appreciate the use of a di�erent base, the numbere,
named after L. Euler4. It is an irrational number, so the decimal expansion
does not have a repeating block. Up to 50 decimal placese is

2:71828182845904523536028747135266249775724709369996:(1.19)

A precise de�nition of e is given in De�nition 4.61. The reason why f (x) = ex

is such an interesting function will become clear in Theorem 2.12 on page 52
where it is stated that this function is its own derivative. If we talk about
the exponential function then we mean the exponential function for this
base. The inverse of this exponential function, the logarithm function for
the basee, is called thenatural logarithm function. It also has a very simple
derivative, see Theorem 2.13 on page 52. For reference purposes, let us state
the de�nitions formally. We graph these two functions on some reasonable
intervals to make sure that you have the right picture in mind when we talk
about them, see Figure 1.12 and Figure 1.13.
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Figure 1.12: ex for x 2 [� 2; 2]
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Figure 1.13: lnx for x 2 [:01; 6]

De�nition 1.20. The exponential function is the exponential function for
the basee. It is denoted byexp(x) or ex . Its inverse is the natural logarithm
function. It is denoted by ln(x).

4Leonard Euler (1707{1783), one of the great mathematicians of the 18th century.
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Exponential Functions grow fast.

Example 1.21 (Exponential Growth). It is not so apparent from the
graph how fast the exponential function grows. You may remember the tale
of the ancient king who, as payment for a lost game of chess, was willing to
put 1 grain of wheat on the �rst square on the chess board, 2 on the second,
4 on the third, 8 on the forth, etc., doubling the number of grains with each
square. The chess board has 64 squares, and that commits him to 263 grains
on the 64th square for a total of

264 � 1 = 18; 446; 744; 073; 709; 551; 615

grains. In mathematical notation, you say that he puts

f (n) = 2 n� 1

grains on the n-th square of the chess board. So, let us graph the function
f (x) = 2 x for 0 � x � 63, see Figure 1.14. On the given scale in the graph,
even an already enormous number like 254, cannot be distinguished from 0.

10 20 30 40 50 60

     18
2. 10

     18
4. 10

     18
6. 10

     18
8. 10

Figure 1.14: Graph of f (x) = 2 x

It is di�cult to imagine how large these numbers are. The amount of
grain which the king has to put on the chess board su�ces to feed the current
world population (of about 6 billion people) for thousands of years. �
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Figure 1.15: Compare 2x and x6.
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Figure 1.16: Compare 2x and x6.

Example 1.22 (Comparison with Polynomials). A di�erent way of il-
lustrating the growth of an exponential function is to compare it with the
growth of a polynomial. In Figures 1.15 and 1.16 you see the graphs of an
exponential function (f (x) = 2 x ) and a polynomial (p(x) = x6) over two
di�erent intervals, [0 ; 23] and [0; 33]. In each �gure, the graph of f is shown
as a solid line, and the one ofp as a dashed line. In the �rst �gure you see
that, on the given interval, the polynomial p is substantially larger than the
exponential function f . In the second �gure you see how the exponential
function has overtaken the polynomial and begins to grow a lot faster. �

Other Bases

Finally, let us relate the exponential and logarithm functions for di�erent
bases. The result is, for any positive numbera (a 6= 1),

Theorem 1.23.

ax = ex ln a and loga x =
ln x
ln a

:

Proof. This is seen quite easily. The �rst identity is obtained in the following
way:

ax = ( eln a)x = ex ln a:

To see the second identity, use

eln x = x = aloga x = ( eln a)loga x = eln a loga x :

This means that ln x = (ln a)(loga x), or loga x = ln x
ln a , as claimed.
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Exponential Growth

Consider a function of the form

f (t) = Ceat :(1.20)

The constants C and a, and with this the function f (t) itself, can be deter-
mined if we give the value of f at two points. We call a the growth rate5.
We say that a function f grows exponentially if it has the form in (1.20).

Example 1.24. Suppose the functionf (t) grows exponentially, f (0) = 3,
and f (5) = 7. Find the function f , its relative growth rate a, and the time
t0 for which f (t0) = 10.

Solution: By assumption, the function is of the form f (t) = Ceat .
Substituting t = 0, we �nd

3 = f (0) = Cea�0 = Ce0 = C:

After having found C = 3, we substitute t = 5 into the expression of f (t):

7 = f (5) = 3 e5a:

From this we deduce, using arithmetic and the fact that the natural loga-
rithm function is the inverse of the exponential function, that

e5a = 7=3 & a =
ln(7=3)

5
= :16946:

In particular, the growth rate of the function is (approximately) :16946, and
f (t) = 3 e:16946t .

Finally, t0 is determined by the equation

3e:16946t0 = 10:

We calculate:

e:16946t0 = 10=3 & t0 =
ln(10=3)
:16946

= 7 :105:

The value for t0 is rounded o�. �
5Some texts call this number a the growth constant, others the relative growth rate.

Actually, the rate of change of f (t ) at time t0 is af (t0), so that the name relative growth
rate (i.e., relative to the value to f (t)) is quite appropriate. Still, in the long run, you may
get tired of having to say relative all the time, and with the exact meaning understood,
you are quite willing to drop this adjective.
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Exercise 27. Suppose the functionf (t) grows exponentially, f (1) = 3, and
f (4) = 7. Find the function f , its relative growth rate a, and the time t0

for which f (t0) = 10.

Exercise 28. Suppose the functionf (t) grows exponentially, and f (T) =
2f (0). Show that f (t + T) = 2 f (t) for any t.

Exercise 29. Supposef (t) describes a population of e-coli bacteria in a
Petrie dish. You assume that the population grows exponentially. At time
t = 0 you start out with a population of 800 bacteria. After three hours
the population is 1900. What is the relative growth rate for the population?
How long did it take for the population to double. How long does it take
until the population has increased by a factor 4?

Remark 4. Some problems remain unresolved in this section. We still have
justify our characterization of the exponential function in Theorem 1.12. We
still have to prove two of the laws of logarithms from Theorem 1.19:

loga(xy) = log a(x) + log a(y) and loga(xz) = z loga(x);

and we have to de�ne the Euler number e. All of this will be done in
Sections 4.11.

1.4 Use of Graphing Utilities

A word of caution is advised. We are quite willing to use graphing utilities,
in our caseMathematica, to draw graphs of functions. We use these graphs
to illustrate the ideas and concepts under discussion. They allow you to
visualize situations and help you to understand them. For a number of
reasons, no graphing utility is perfect and we cannot uncritically accept
their output. When one of the utilities is pushed to the limit errors occur.
Given any computer and any software, no matter how good they are, with
some e�ort you can produce erroneous graphs. That is not their mistake, it
only says that their abilities are limited.

In Figures 1.17 and 1.18 you see two graphs of the function

p(x) = ( x + 1) 6 = x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1 :

Once we instructed the program to use the expression (x+1) 6 to produce the
graph, and then we asked it to use the expanded expression. The outcome
is remarkably di�erent. Why? The program makes substantial round-o�
errors in the calculation. Which one is the correct graph? Calculus will
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Figure 1.17: p(x) = ( x + 1) 6
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Figure 1.18: p(x) = ( x + 1) 6

tell you that the second graph cannot have come close to the truth. Is
the �rst one correct? This is di�cult to tell, particularly, as y values are
indistinguishable. The program shows 0's at all ticks on this axis. True, the
numbers are small, but they are certainly not zero. Still, the general shape
of the graph in the �rst �gure appears to be quite accurate.

On a smaller interval the results get even worse. You see what happens
in Figures 1.19 and 1.20. The �rst graph is accurate in the sense that, given
the scale shown on the axes, you should not see anything.
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Figure 1.19: p(x) = ( x + 1) 6
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Figure 1.20: p(x) = ( x + 1) 6

When you use technology to assist you in graphing functions, then you
have to make sure that the task does not exceed its abilities. Only experience
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and knowledge of the subject matter, in our case calculus, will help you.
The process of using graphics is interactive. Graphs help you to understand
calculus, but you need calculus to make sure the graphs are correct.
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Chapter 2

The Derivative

The derivative is one of the most important tools in the study of graphs of
functions, and with this the behavior of functions. Essentially, a function
f (x) is di�erentiable at a point x0 if there is a line (the tangent line to the
graph of f at x0) which is close to the graph of the function for all x near
x0. The slope of this line will be called the derivative off at x0 and denoted
by f 0(x0). If the function is di�erentiable at all points in its domain, and
with this f 0(x) is de�ned for all x in the domain of f , then we considerf 0(x)
as a function and call it the derivative of f (x).

We demonstrate this idea �rst with two examples. In the �rst example
we use the exponential function to illustrate several ideas which enter into
the general de�nition of the derivative. In the second example we take a
geometric approach and interpret the tangent line in a special case. The
geometry tells us what the derivative of the function is, or should be.

After these two examples we formally de�ne the terms di�erentiability
and derivative, see De�nition 2.2 on page 43. The requirement that the
di�erence between the graph and the tangent line is small is expressed ana-
lytically in terms of an inequality.

We give several geometric interpretations for this inequality. One inter-
pretation places the function between an upper and a lower parabola on an
open interval around the point at which the function is di�erentiable. The
parabolas touch at this point. Another interpretation gives an estimate for
the di�erence between the slope of the tangent line and secant lines through
nearby points.

We calculate the derivatives of some basic functions based on the de�-
nition. For some other functions we provide the derivatives and postpone
the calculation to a later point in this manuscript. We interpret the deriva-

35
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tive at a point as the rate of change of the function at this point. Then
we use the derivative to formulate and solve an easy, yet very important
di�erential equation. A large part of this chapter is devoted to rules which
allow us �nd the derivatives of composite functions, if the derivative of the
constituents are known. We calculate many examples. We include a section
on numerical methods for �nding values (approximation by di�erentials)
and zeros of functions (Newton's method), and on solving some di�erential
equations (Euler's method). We close the chapter with a list of the rules of
di�erentiation and a table of derivatives of important functions.

First Example

Consider the exponential function, f (x) = ex , and the point (1; e) on the
graph. We would like to �nd the tangent line to the graph of f at this point.
It is a straight line which close to the function near this point. A part of
the graph of the exponential function is shown in Figure 2.1. In addition,
we indicated the proposed tangent line.
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Figure 2.1: Graph of the Exponential Function

You can get a feeling for the tangent line by zooming in on the point. In
Figure 2.2 you �nd a smaller piece of the graph of the exponential function.
Take a ruler and see whether you can still distinguish the graph from a
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straight line. There is still a di�erence, but it is small. At least in the
example we are rather successful. You should try this example and similar
ones by yourself on a graphing calculator or a personal computer.

0.9 0.95 1.05 1.1

2.5

2.6

2.7

2.8

2.9

Figure 2.2: A Smaller Piece of the Graph of the Exponential Function

Our declared goal is to �nd a line which is close to the graph off (x) = ex

near the point (1; e). In fact, the graph of f begins to look like a straight
line when we look at it closely. So the graph off itself suggests what line we
ought to take. A measurement using Figure 2.2 suggests that, asx increases
from :9 to 1:1, the values for f (x) increase from 2:46 to 3:00. This means
that the average rate of increase off for x between:9 and 1:1 is, as precisely
as we were able to measure it,

3:00 � 2:46
1:1 � :9

=
:54
:2

= 2 :7:

So the line which resembles the graph off near (1; e), and which we plan
to call the tangent line, is supposed to go through the point (1; e) and have
slope 2:7, approximately. According to the point-slope formula of a line (see
Section 1.1), such a line is given by the equation

l(x) = 2 :7(x � 1) + e:
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Let us denote the slope of the tangent line to the graph off at the point
(x; f (x)) by f 0(x). Later on we will call f 0(x) the derivative of f at x and
interpret f 0(x) as the slope of graph off at (x; f (x)). In the example you
decided that f 0(1) is approximately 2:7. More exactly, f 0(1) = e, as you will
see later as a consequence of Theorem 2.12 on page 52. That means that
the tangent line has the formula

l(x) = e(x � 1) + e = ex:

Our goal is to �nd a line which is close to the graph, near a given point.
So let us check how closel(x) is to ex if x is close to 1. In Table 2.1 you �nd
the values of ex and l(x) for various values of x. You see that ex � l (x) is
small, particularly for x close to 1. Let us compareex � l (x) and x � 1 by
taking their ratio ( ex � l (x))=(x � 1). As you see in the second last column of
the table, even this quantity is small for x near 1. In other words,ex � l (x)
is small compared to the distance ofx from 1. Let say casually that (x � 1)2

is very small if x � 1 is small. The last column of the table suggests that
ex � l (x) is roughly proportional to the very small quantity ( x � 1)2.

x ex l(x) ex � l (x) ex � l (x)
(x � 1)

ex � l (x)
(x � 1)2

2 7:389056 5:436564 1:952492 1:952492 1:952492

1:2 3:320117 3:261938 0:058179 0:290894 1:454468

1:1 3:004166 2:990110 0:014056 0:140560 1:405601

1:05 2:857651 2:854196 0:003455 0:069104 1:382079

1:01 2:745601 2:745465 0:000136 0:013637 1:363682

Table 2.1: Numerical Calculation for the Exponential Function

Exercise 30. Make a table like Table 2.1 for f (x) = ln x and l(x) = x � 1.
More speci�cally, tabulate f (x), l (x), f (x) � l (x), ( f (x) � l (x))=(x � 1) and
(f (x) � l (x))=(x � 1)2 for x = 2, 1:5, 1:2, 1:1 1:05 and 1:01.

Let us interpret the example geometrically. In Figure 2.3 you see the
graph of the exponential function, which we denoted byf (x). We used a
solid line to draw it. There are two parabolas. One of them is open upwards
and we call it p(x), and the other one is open downwards and we call itq(x).
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Figure 2.3: Exponential Function and Tangent Line between two Parabolas

We used short dashes to draw their graphs. These two parabola touch in
the point (1; e). In addition you see the line l(x), which is our candidate for
the being the tangent line.

On the shown interval, the graphs off (x) and l(x) are above the graph of
q(x) and below the one ofp(x). In mathematical notation this is expressed
as

q(x) � f (x) � p(x) and q(x) � l (x) � p(x):

One way of saying that f (x) and l(x) are close to each other nearx0 is to
require that they are jointly in between two parabolas which touch (and do
not cross each other) in the point (x0; f (x0)) = ( x0; l (x0)). The `hugging'
behaviour of the parabolas shows that there is only little room in between
them near x0, and if f (x) and l(x) are both squeezed in between these
parabolas, then the distance betweenf (x) and l(x) is small. As it turns
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out, only one line can be placed in between two parabolas as in the picture,
and this line is the tangent line to the graph of f (x) at ( x0; f (x0)). The slope
of the line l(x) is e, so that the derivative of f (x) = ex at x = 1 is f 0(1) = e.
We will talk more about this geometric interpretation in Section 2.5.

Exercise 31. Use DfW (or any other accurate tool) to graph f (x) = ln x,
l (x) = x � 1, p(x) = 2( x � 1)2 + x � 1 and q(x) = � 2(x � 1)2 + x � 1 on the
interval [ :5; 1:5].

Second Example

Before we discuss the second example, let us think more about the tangent
line. What is its geometric interpretation? Which line looks most like the
graph of a function f near a point x. Sometimes (though not always) you
can take a ruler and hold it against the graph. The edge of the ruler on the
side of the graph gives you the tangent line. You �nd a line l which has the
same value atx as f (f (x) = l(x)), and the line does not cross the graph of
f (near x the graph of f is on one side of the line). This rather practical
recipe for �nding the tangent line of a di�erentiable function works for all
functions in these notes at almost all points, see Remark 18 on page 164. It
works in the previous example as well as in the one we are about to discuss.

For x 2 (� 1; 1) we de�ne the function

f (x) = y =
p

1 � x2:(2.1)

We like to use practical reasoning and a little bit of analytic geometry to
show that

f 0(x) =
� x

p
1 � x2

:(2.2)

The function describes the upper hemisphere of a circle of radius 1 cen-
tered at the origin of the Cartesian coordinate system. To see this, square
the equation and write it in the form x2 + y2 = 1, which is the equation of
the circle. Thus we are saying that the slope of the tangent line to the circle
at a point ( x;

p
1 � x2) in the upper hemisphere is� x=

p
1 � x2. The circle

and the tangent line are shown in Figure 2.4.
What is the slope of the tangent line to the circle at a point (x; y)?

Your intuition is correct if you say that it is perpendicular to the radial line
through the point (0 ; 0), the origin of the Cartesian plane, and the point
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Figure 2.4: The radial line is perpendicular to the tangent line.

(x; y).1 The slope of the radial line isy=x. In analytic geometry you (should
have) learned that two lines intersect perpendicularly if the product of their
slopes is� 1. This means that the slope of the tangent line to the circle at
the point ( x; y) is � x=y. We called the slope of the tangent line to the graph
of f at a point ( x; f (x)) the derivative of f at x and we denoted it by f 0(x).
Substituting y =

p
1 � x2, we �nd that

f 0(x) = �
x
y

=
� x

p
1 � x2

:(2.3)

This is exactly the result predicted in the beginning of the discussion.
We will return to this example later (see Example 2.61) when we formally

calculate the derivative of this speci�c function.

Exercise 32. In Figure 2.5 you see part of the graph of the functionf (x) =
sinx. In this picture draw a line to resemble the graph near the point
(1; sin 1). Determine the slope of the line which you drew. Write out the
equation for this line in point slope form. Find f 0(1).

1You are encouraged to use geometric reasoning to come up with a justi�cation of this
statement. You may also measure the angle in the �gure.
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Figure 2.5: The graph of sinx

Exercise 33. Use your graphing calculator, DfW, or any other means to
get the graph of f (x) = ex near x = 1=2. You can also use one of the graphs
of the exponential functions from these notes. Use the graph to estimate
f 0(1=2), the slope of the tangent line at this point.

2.1 De�nition of the Derivative

In both of the previous examples we were able to suggest the tangent line
to the graph of a function at a point. In the �rst example we also discussed
the idea of the tangent line being close to the graph. We discussed the idea
numerically and in terms of a picture. The graph and the tangent line were
squeezed between two parabolas. In our upcoming de�nition of di�eren-
tiability, of the tangent line, and the derivative we will express `closeness'
analytically. We will use the absolute value. If you are not familiar with it,
then you may want to read about it in Section 5.2. But, for the moment it
su�ces that you know that for any two real numbers a and b the absolute
value of their di�erence, i.e., ja� bj, is the distance between these two points.
Let us formalize the idea of an interior point.

De�nition 2.1. Let D be a subset of the real line, andx0 an element in
D . We say that x0 is an interior point of D if D contains an open interval
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I and x0 belongs toI .

Remember also that the domain of a function is the set on which it is
de�ned.

De�nition 2.2. Let f be a function andx0 an interior point of its domain.
We say that f is di�erentiable at x0 if there exists a line l(x) and a real
number A, such that

jf (x) � l (x)j � A(x � x0)2(2.4)

for all x in some open interval which containsx0.2 We call l (x) the tangent
line to the graph of f at x0. We denote the slope ofl(x) by f 0(x0) and call
it the derivative of f at x0. We also say thatf 0(x0) is the slopeof the graph
of f at x0 and the rate of change3 of f at x0. To di�erentiate a function at
a point means to �nd its derivative at this point.

For this de�nition to make sense, it is important to observe that the
derivative is unique (there is only one derivative of f at x0), whenever it
exists. This is stated in the following theorem. It is important to prove this
theorem, but won't do this in these notes.

Theorem 2.3. If f is as in De�nition 2.2, and f is di�erentiable at x0,
then there exists only one linel(x) for which (2.4) holds.

Example 2.4. Consider the function f (x) = cos x. We like to show

f 0(0) = 0 :

One can use elementary geometry to show (see (5.30)) that

j cosx � 1j �
1
2

x2

2To keep our approach simple, we have committed ourselves to the exponent 2 in (2.7).
We could have taken any exponent � with 1 < � � 2. In fact, there won't be any essential
change in our discussion of di�erentiability, with one exception. When we discuss the
di�erentiability of inverse functions (see Section 2.11.4 and in particular Theorem 2.69),
then we need that f (x) = ( bx + c)1=� is di�erentiable for those x for which bx + c > 0.
This is somewhat more involved than the proof in the special case where � = 2 where
we consider (bx + c)1=2 =

p
bx + c, see Proposition 2.15. A disadvantage of using the

exponent 2 is that the Fundamental Theorem of Calculus (see Theorem 4.32) will not be
as generally applicable as we may want it to be. Still, we can take care of this matter
when time comes.

3The interpretation of the derivative as rate of change has a concrete meaning which
you understand better after reading Section 2.4.
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for all x 2 (� �= 4; �= 4). So, setting x0 = 0, l(x) = 1 and A = 1=2 we see
that

jf (x) � l (x)j � A(x � x0)2

for all x 2 (� �= 4; �= 4). The slope of the linel(x) is zero. So, according to
our de�nition, f is di�erentiable at x0 = 0 and f 0(0) = 0. �

Exercise 34. Let f (x) = sin x. Show that f 0(0) = 1. Hint: Use the
estimate j sinx � xj � x2=2 for all x 2 (� �= 4; �= 4) given in (5.30).

Let us explain how the requirement:

jf (x) � l (x)j � A(x � x0)2(2.5)

for all x in some open interval aroundx0, expresses that the functionf (x)
is close to its tangent line l(x) on some interval aroundx0. It does not hurt
to take a numerical example. SupposeA = 1, it is merely a scaling factor
anyway. If x is close to x0, then jx � x0j is small, and (x � x0)2 is very
small. If jx � x0j < : 1, then we are requiring that jf (x) � l (x)j < : 01. If
jx � x0j < : 001, then we are requiring that jf (x) � l (x)j < : 000001.

Our �rst example is relevant and easy. We use it also to illustrate the
idea and the de�nition of the derivative. Linear functions are functions
whose graph is a line, and these are exactly the functions which are given
by an equation of the form

l(x) = ax + b:

Example 2.5. Show that the linear function l(x) = ax + b is di�erentiable
everywhere, �nd its tangent line at each point on the graph, and show that

l0(x) = a;

for all real numbers x.
To make this general statement more concrete, you may replace the

coe�cients in the formula for l (x) by numbers. Then you get special cases.

� If l (x) = 3 x + 5, then l0(x) = 3.

� If l (x) = c, then l0(x) = 0.

A First Approach: Pick a point ( x0; l (x0)) on the graph of l(x). By
design, the tangent line to a graph of l(x) at ( x0; l (x0)) is a line which is
close to the graph of l(x). Apparently there is a perfect choice, the line
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itself. So the tangent line to the graph of l(x) at ( x0; l (x0)) is l (x). The
derivative of a function at a point is, by de�nition, the slope of the tangent
line at the point. In our case, this is the slope of the line itself. This slope
is a, and we �nd l0(x) = a.

A Second Approach: Fix a point x0. According to our de�nition, we
need to �nd a line t(x) (we use a di�erent name for this line to distinguish
it from our function l(x)) such that

jl (x) � t(x)j � A(x � x0)2(2.6)

for all x in some open interval aroundx0. Setting l(x) = t(x), the left hand
side in (2.6) is zero, so that the inequality holds for any positive numberA
and all x. This means that l (x) is di�erentiable at x0, in fact at any x0, and
that l (x) is its own tangent line. The slope of the line isa, and we �nd that
l0(x0) = a. �

Example 2.6. Show that polynomials are di�erentiable at each point x in
(�1 ; 1 ). Find their derivatives. 4

Solution: A polynomial is a function of the form

p(x) = cnxn + cn� 1xn� 1 + � � � + c1x + c0:

Pick a point x0. We like to show that p(x) is di�erentiable at x0, and �nd
p0(x0).

We saw earlier, see Remark 2 in Section 1.2, that we can expandp(x) in
powers ofx0:

p(x) = Cn(x � x0)n + Cn� 1(x � x0)n� 1 + � � � + C1(x � x0) + C0:

With

l(x) = C1(x � x0) + C0 and A = ( jCn j + � � � + jC2j) :

we saw, that

jp(x) � l (x)j � A(x � x0)2

for all x 2 (x0 � 1; x0 + 1). This means that l (x) = C1(x � x0) + C0 is
the tangent line to the graph of p(x) at the point ( x0; p(x0)), and that
p0(x0) = C1.

4We will �nd a more e�cient way for di�erentiating a polynomial later.
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Let us be more speci�c. Consider the polynomial

p(x) = 2 x4 � 5x3 + 7x2 � 3x + 1 ;

and expanded in powers of (x � 2):

p(x) = 2( x � 4)4 + 11(x � 2)3 + 25(x � 2)2 + 29(x � 2) + 15:

The tangent line to the graph of p(x) at the point (2 ; p(2)) = (2 ; 15) is
l(x) = 29( x � 2) + 15. This line has slope 29, so thatp0(2) = 29. �

Example 2.7. Find the derivative of the degree two polynomial

p(x) = ax2 + bx + c

at the point x0.
Solution: As an example, we earlier expanded degree 2 polynomials in

powers of (x � x0). We found (see (1.13)) that

p(x) = ax2 + bx + c = a(x � x0)2 + (2 ax0 + b)(x � x0) + ( ax2
0 + bx0 + c):

This means, the tangent line to the graph ofp(x) at the point ( x0; p(x0)) is

l (x) = (2 ax0 + b)(x � x0) + ( ax2
0 + bx0 + c);

and the derivative (the slope of the tangent line) is p0(x0) = 2 ax0 + b.
To give a numerical example, the tangent line to the graph of

p(x) = 5 x2 � 3x + 7

at x0 = 3 is l(x) = 27( x � 3) + 43 and p0(3) = 27. �

Exercise 35. For the given polynomial p(x) and point x0, �nd the tangent
line to the graph of p(x) at the point ( x0; p(x0)) and p0(x0).

1. p(x) = 3 x2 � 4x + 3

2. p(x) = 7 x2 + 2x � 5

3. p(x) = x3 � 3x2 + 2x + 7.
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2.2 Di�erentiability as a Local Property

Di�erentiability is a local property of a function. This means, whether a
function is di�erentiable at a point x0 depends on the behaviour of the
function on an open interval around x0. It does not su�ce to consider the
function only at the point x0, and it does not matter how the function looks
like further away from x0. The de�nition refers only to an open interval
around x0, and that interval can be chosen to be small, in fact, as small as
we like as long as it contains points to the right and left of x0. Typically,
the estimate in (2.4) holds only on some interval aroundx0, and not on the
entire domain of the function.

-1.5 -1 -0.5 0.5 1 1.5

-3

-2

-1

1

2

3

Figure 2.6: Estimates are local.

Let us illustrate this fact with an example. Consider the di�erentiability
of the function f (x) = x3 at x0 = 0. We assert that the tangent line l(x) to
the graph of f (x) at (0; 0) is l (x) = 0. This is true because

jf (x) � l (x)j = jx3 � 0j � (x � 0)2

for all x 2 (� 1; 1). We satis�ed the requirement in De�nition 2.2 with A = 1.
On the other hand, for any A > 0 the inequality

jf (x) � l (x)j = A(x � 0)2
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holds only for x 2 [� A; A ], and not for arbitrary x. You see this illustrated
in Figure 2.6. The solid line is the graph off (x). The dashed lines are the
graphs of � x2. For the inequality to hold with A = 1, the solid line needs
to be between the dashed lines, and this happens only forx 2 [� 1; 1].

2.3 Derivatives of some Basic Functions

In this section we use the de�nition to �nd the derivatives of some basic
functions. For some of them we can give a detailed argument, for others
we have to postpone the justi�cation. We collect the examples in Table 2.2
before we discuss them one by one. In Section 2.11 you will learn rules by
which you can calculate the derivatives of composite functions. That will
give you many more examples.

y(x) y0(x) Domain

ax + b a x 2 (�1 ; 1 )

sinx cosx x 2 (�1 ; 1 )

cosx � sinx x 2 (�1 ; 1 )

eax aeax x 2 (�1 ; 1 )

ln x 1=x x 2 (0; 1 )

ax2 + bx + c 2ax + b x 2 (�1 ; 1 )
p

ax + b a
2
p

ax+ b
x 2 (� b=a;1 ) if a > 0

p
ax + b a

2
p

ax+ b
x 2 (�1 ; � b=a) if a < 0

Table 2.2: Some Derivatives

We will encounter many functions which have a derivative at each point
in their domain. This motivates the following de�nition.

De�nition 2.8. Let a function f be de�ned on an open interval(a; b). We
say that f is di�erentiable on (a; b) (or di�erentiable for short) if the deriva-
tive f 0(x) exists for all x 2 (a; b). In this case we obtain a functionf 0 which
is de�ned for all x 2 (a; b) and which is called thederivative of f .

If a function is de�ned on a union of open intervals, then we say that
the function is di�erentiable if it is di�erentiable on each of the intervals.
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Let us reformulate our De�nition 2.2 in a less elegant but more practical
way. Instead of saying \for all x in some open interval aroundx0" we say
\ for some d > 0 and all x 2 (x0 � d; x0 + d)." Instead of asking for a line
we ask for a numberm, its slope, and use the linel(x) = f (x0) + m(x0 � x).
Then the de�nition reads this way:

De�nition 2.9. Let f be a function andx0 an interior point of its domain.
We say that f is di�erentiable at x0 if there exist numbersm, A and d > 0,
such that

jf (x) � [f (x0) + m(x � x0)]j � A(x � x0)2(2.7)

for all x in the open interval (x0 � d; x0 + d) around x0.5 If f (x) is di�er-
entiable at x0, then the tangent line to the graph off at x0 is de�ned as the
line given by the equation

l(x) = f (x0) + m(x � x0):(2.8)

We denote its slopem by f 0(x0) and call it the derivative of f at x0. We
also say that f 0(x0) is the slope of the graph of f at x0 and the rate of
change. To di�erentiate a function at a point means to �nd its derivative
at this point.

We provide one more reformulation which makes some calculations look
more elegant. For a �xed x0 and any x we set

h = x � x0:(2.9)

With this notation the following three statements are equivalent:

(1) x 2 (x0 � d; x0 + d); (2) h 2 (� d; d); and (3) jhj < d:

The reformulation of De�nition 2.9 using this notation looks as follows.
Here f (x) still denotes a function, and x0 is assumed to be an interior point
of its domain.

De�nition 2.10. We say that f is di�erentiable at x0 if there exist numbers
f 0(x0), A and d > 0, such that

jf (x0 + h) � [f (x0) + f 0(x0)h]j � Ah2(2.10)

5We have to make sure that the left hand side of the inequality in (2.7) makes sense,
i.e., that f (x) is de�ned for all x in ( x0 � d; x0 + d). This can be assured by choosingd
su�ciently small.
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for all h for which jhj < d . The tangent line to the graph of f at x0 is
de�ned as the line given by the equation

l(x) = f (x0) + f 0(x0)(x � x0):(2.11)

We call f 0(x0) the derivative of f at x0.

Example 2.11. Show that the derivative of the sine function is the cosine
function, or, expressed in mathematical notation6,

sin0x = cos x:(2.12)

For this equation to hold, the angle x needs to be measured in radians.
Solution: We appeal to the de�nition of di�erentiability and the deriva-

tive as it is formulated in De�nition 2.10. Fix a point x0. Then we need to
provide positive numbersA and d and show that

jsin(x0 + h) � [sinx0 + (cos x0)h]j � Ah2(2.13)

for all h for which jhj < d . We do this for A = 1 and d = �= 4.
As tools, we will use the inequalities (see (5.30))

jh � sinhj � h2=2 and j1 � coshj � h2=2(2.14)

(they hold for jhj < �= 4), and the trigonometric identity (see (5.19))

sin(x + h) = sin x cosh + sin h cosx:(2.15)

Furthermore, we need a few basic facts about absolute values. For any real
numbers a, and b one has

(i) a � j aj; (ii) ja + bj � j aj + jbj; and (iii) jabj = jajjbj:

In the �rst step of the upcoming calculation we use (2.15). The second
step is basic arithmetic. In the third one we use the facts about working

6In some texts you will �nd this written as (sin x)0 = cos x. We chose our notation
in analogy with the symbol f 0(x). The notation does not really matter as long as it is
interpreted correctly by the reader. Ambiguities and inconsistencies can be avoided if one
writes: If f (x) = sin x, then f 0(x) = cos x. This convention is used frequently, but it is
somewhat wordy, so that a more compact expression is preferable. The problem arises,
and our way of placing the prime to indicate the derivative does not work, if one tries to
write down the derivative of a function like f (x) = x2. The reader may and should not
be bothered by this notational problem, though mathematicians will try hard to express
themselves in a condensed manner, while staying precise and consistent.
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with absolute values. In the forth step we use (2.14), and in the last one we
use that j sinx0j and j cosx0j are � 1.

j sin(x0 + h) � [sinx0 + (cos x0)h]j

= j sinx0 cosh + sin h cosx0 � sinx0 � (cosx0)hj

= j sinx0(cosh � 1) + cos x0(sin h � h)j

� j sinx0jj cosh � 1j + j cosx0jj sinh � hj

� j sinx0j
h2

2
+ j cosx0j

h2

2
� h2:

This completes the veri�cation of (2.13) with our chosen A and d. In par-
ticular, we have shown that the sine function is di�erentiable and that its
derivative is the cosine function.

Let us look at the speci�c value x0 = �= 4. You can �nd the numeri-
cal value of cos(�= 4) using elementary geometry, or you may look it up in
Table 5.3 on page 280. Our formula says that

sin0(�= 4) = cos(�= 4) =
p

2=2:

The tangent line to the graph of the function sin x at x0 = �= 4 is given by
the equation

l(x) =

p
2

2

�
x �

�
4

�
+

p
2

2
:

The slope of this tangent line (resp., the rate of change of sinx at the point
x0 = �= 4) is

p
2=2. �

Exercise 36. Find the tangent line to the graph of sin x at the point
(�= 6; 1=2).

Exercise 37. Show that

cos0x = � sinx:

Hint: The calculation is pretty much like the one in Example 2.11. Use
l(x) = � sin(x0)(x � x0) + cos x0 as the proposed tangent line to the graph
of cosx at (x0; cosx0). Instead of the trigonometric identity (5.19), use the
corresponding formula for cosx (see (5.21)):

cos(x0 + h) = cos x0 cosh � sinx0 sinh:
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Theorem 2.12. Let a and c be constants. The function f (x) = ceax is
di�erentiable at all x, and f 0(x) = aceax . Furthermore, functions of the form
f (x) = ceax are the only functions which satisfy the equationf 0(x) = af (x).

Exercise 38. Show that the exponential function expx = ex is its own
derivative.

At this point we are not in the position to prove either statement in the
theorem. For the time being we need to accept the theorem as a fact. In
Example 2.70 we will show that the exponential function is di�erentiable,
and that it is its own derivative. We will assume Theorem 2.13, which
is stated next. The claim that multiples of this exponential are the only
solutions of the equation f (x) = ceax is shown in Section 3.2.

You may �nd it enlightening to review the data which we presented in
Table 2.1. Essentially, we looked at numerical evidence thatf (x) = ex is
di�erentiable at x = 1, and that the tangent line at this point is l (x) = ex.
The theorem says that f 0(1) = e, and this is the slope of the linel(x). The
last column in the table gives evidence that

jex � l (x)j � 2(x � 1)2

for 1 � x � 2. Using the formulation of di�erentiability as in (2.4), these
two statements are consistent.

We de�ned the natural logarithm function ln x in De�nition 1.20 on
page 27. We will see later on (more precisely, we will use as de�nition, see
De�nition 4.58 and Theorem 4.59):

Theorem 2.13. The natural logarithm function is di�erentiable at all the
points in its domain (0; 1 ), and

ln0(x) = 1 =x

Exercise 39. Find the tangent line to the graph of ln x at the point (1 ; 0).

By now you may have gotten the impression that all functions are dif-
ferentiable. This is not so.

Example 2.14. Show that the absolute values function (for a graph see
Figure 2.7)

f (x) = jxj =

(
x for x � 0

� x for x � 0
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Figure 2.7: The absolute value function

is not di�erentiable at x = 0.
Solution: There is no potential tangent line which is close to the graph

of f (x) near x = 0 in the sense in which it has been speci�ed in the de�nition
of di�erentiability. Zooming in on the point (0 ; 0) does not help, the picture
remains the same.

You can give an analytical argument. If there is a tangent line, then it
has to be of the forml(x) = bx, as it has to go through the point (0; 0). Let
A be any positive number. The estimate in De�nition 2.10 applied in our
context becomes

jjhj � bhj � Ah2:(2.16)

For h > 0 this translated into j1� bj � Ajhj, and for h < 0 into j1+ bj � Ajhj.
If b 6= 1, then the �rst inequality is violated for some h of su�ciently small
absolute value. If b 6= � 1, then the second inequality is violated for some
h of su�ciently small absolute value. That means that we cannot satisfy
(2.16) for any number A and all h in some open interval around 0. So the
absolute value function is not di�erentiable at x = 0. �

There is a last example of a function for which we like to �nd the deriva-
tive by hand. We formulate it as a Proposition. It is of intrinsic importance
to our approach. It is essential to the proof of Theorem 2.69 on page 104.
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Proposition 2.15. The function g(x) =
p

bx + c is de�ned for all real
numbers x for which bx + c � 0. This function is di�erentiable for all x
for which bx + c > 0, and the derivative is

g0(x) =
b

2
p

bx + c
:
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Figure 2.8: g(x) =
p

x + 1
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Figure 2.9: g0(x) = 1 =(2
p

x + 1)

In Figure 2.8 you see the graph of the functiong(x) =
p

x + 1, and in
Figure 2.9 the graph of its derivative g0(x) = 1

2
p

x+1
.

Let us give another concrete

Example 2.16. Find the domain and the derivative of the function f (x) =p
5x � 3.

Solution: The function is de�ned whenever 5x � 3 � 0, and this means
that x 2 [3=5; 1 ). The derivative of the function is

f 0(x) =
5

2
p

5x � 3
:

The expression for the derivative holds forx 2 (3=5; 1 ). �

The expression which de�nesg(x) is a real number only if the term
under the radical sign is non-negative, which means that we have to make
the assumption that bx+ c � 0. If b > 0, then this means that g(x) is de�ned
for all x in [� c=b;1 ), and di�erentiable at all x 2 (� c=b;1 ). If b < 0, then
this means that g(x) is de�ned for all x in ( �1 ; � c=b], and di�erentiable
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at all x in ( �1 ; � c=b). If you have di�culties with the veri�cation, then
you may want to review the rules for calculating with inequalities from
Section 5.2 on page 266. The borderline case in whichb = 0 and c � 0
leads to a constant function with zero derivative. In caseb = 0 and c < 0
the function is not de�ned, or, in other words, there is no x for which the
function is de�ned.

Exercise 40. For each of the following functions, decide where the function
is de�ned and where it is di�erentiable, and �nd the expression for the
derivative.

(1) f (x) =
p

2x + 5 (2) f (x) =
p

� 3x + 4 (3) f (x) =
p

7x � 2:

Proof of Proposition 2.15. We only treat the case g(x) =
p

x. This special
case, together with the chain rule, implies the general case, see Example 2.48.

We �x a value for x > 0. Using the formulation of the inequality which
de�nes di�erentiability in (2.11) 7, we need to �nd positive numbers d and
A, such that

jg(x + h) � [g(x) + g0(x)h]j � Ah2

or, explicitly,

�
�
�
�
p

x + h �
�
p

x +
h

2
p

x

� �
�
�
� � Ah2(2.17)

wheneverjhj < d .
It is a little tricky and takes some work to come up with values for A

and d, and you are not expected to develop great skills at this. If you use

A =
1

2(
p

x)3 ;(2.18)

then we claim that the inequality in (2.17) holds as long asx 2 (0; 1 ) and
jhj < d = x. With this choice of d it is assured that x + h 2 (0; 1 ) and that
g(x + h) is de�ned. This is all we will need. We hope that you can recognize
the steps in the following calculation. It is a challenge.

7We use x instead of x0.
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�
�
�
�
p

x + h �
�
p

x +
h

2
p

x

� �
�
�
� =

�
�
�
�
p

x + h �
p

x �
h

2
p

x

�
�
�
�

=

�
�
�
�

(x + h) � x
p

x + h +
p

x
�

h
2
p

x

�
�
�
�

= jhj

�
�
�
�

1
p

x + h +
p

x
�

1
2
p

x

�
�
�
�

= jhj

�
�
�
�
2
p

x � (
p

x + h +
p

x)

2
p

x(
p

x + h +
p

x)

�
�
�
�

= jhj

�
�
�
�

p
x �

p
x + h

2
p

x(
p

x + h +
p

x)

�
�
�
�

� j hj

�
�
�
�

p
x �

p
x + h

2x

�
�
�
�

= jhj

�
�
�
�

x � (x + h)

2x(
p

x +
p

x + h)

�
�
�
�

= h2
�
�
�
�

1

2x(
p

x +
p

x + h)

�
�
�
�

� h2
�
�
�
�

1
2x

p
x

�
�
�
�

= Ah2:

With this we veri�ed (2.17) and completed the proof of the proposition in
the stated special case.

Exercise 41. Prove Proposition 2.15 directly for any b > 0 and c. Hint:
One may use the road map of the calculation which we just went through.
The expressions just get a bit bigger.

Using the formulation of the inequality which de�nes di�erentiability in
(2.11), you need to �nd positive numbers d and A, such that

jg(x + h) � [g(x) + g0(x)h]j � Ah2

or, explicitly,
�
�
�
�
p

b(x + h) + c �
� p

bx + c +
bh

2
p

bx + c

� �
�
�
� � Ah2(2.19)

wheneverjhj < d . Use

A =
b2

2(
p

bx + c)3
;
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then the inequality in (2.19) holds as long asx 2 (� c=b;1 ) and jhj < d =
jx + c=bj. With this choice of d it is assured that x + h 2 (� c=b;1 ) and that
g(x + h) is de�ned. Good luck!

2.4 Slopes of Secant Lines and Rates of Change

Let us compare the derivative with the result of another, geometric con-
struction. Consider a function f which is de�ned on an open interval (a; b).
Let x0 be a point in the interval. For all x 2 (a; b), x 6= x0, we can draw a
line through the points (x0; f (x0)) and (x; f (x)). It is called the secant line
through these two points. The slope of the secant line is

f (x) � f (x0)
x � x0

:

and we call it the average rate of changeof f (x) over the interval with
endpoints x0 and x.

You see this idea illustrated in Figure 2.10. On the graph you see two
points, (x; f (x) and (x0; f (x0)). We also indicated x and f (x) along the
axes. The straight line is the secant line. Its slope is the average rate of
change of the function over the interval [x0; x].

1.2 1.4 1.6 1.8

0.2

0.4

0.6

0.8

1

x

f(x)

Figure 2.10: The function f (x)
and one secant line.

o

Figure 2.11: The slopes of secant
lines, the function g(x).

Exercise 42. Find the average slope of the function sinx over the interval
[�= 6; �= 3].
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Exercise 43. Find the average slope of the function lnx over the interval
[2; 15].

Keeping x0 �xed and allowing x to vary, we may consider the slope of
the secant line through the points (x0; f (x0)) and (x; f (x)) as a function of
x. The expression for this function is

g(x) =
f (x) � f (x0)

x � x0
:(2.20)

This function is de�ned for all x 2 (a; b) for which x 6= x0. In Figure 2.11
you see the graph of this function, wheref (x) is the function shown in
Figure 2.10. The little empty circle indicates where the function is not
de�ned, i.e., where x = x0.

Here is a concrete example. It is not the one shown in the �gures.

Example 2.17. If f (x) = x2, and we �x x0, then

g(x) =
x2 � x2

0

x � x0
=

(x � x0)(x + x0)
x � x0

= x + x0:

Exercise 44. Supposef (x) = x3, and you �x x0. Simplify the expression
for the function

g(x) =
f (x) � f (x0)

x � x0
:(2.21)

Hint: Use long division to calculate (x3 � x3
0)=(x � x0).

Suppose now thatf is di�erentiable at x0. This means that there exists
a positive number A such that

jf (x) � [f (x0) + f 0(x0)(x � x0)]j � A(x � x0)2(2.22)

for all x in some open interval I around x0 (see De�nition 2.2 on page 43).
Dividing (2.22) by x � x0 we �nd:

jg(x) � f 0(x0)j =

�
�
�
�
f (x) � f (x0)

x � x0
� f 0(x0)

�
�
�
� � Ajx � x0j(2.23)

for all x 2 I , x 6= x0.
This means that, for a di�erentiable function f , the slope of the tan-

gent line at a point is approximately the slope of the secant line through a
nearby point. More precisely, the inequality in (2.23) tells us how small the
di�erence between the slope of the tangent line and the slopes of secant lines
through points (x0; f (x0)) and (x; f (x)) must be as a function of (x � x0),
as longx 2 I . It cannot exceedAjx � x0j. We summarize this discussion as
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Theorem 2.18. 8 Supposef is a function which is di�erentiable at x0.
There exist positive numbersA and an open interval I around x0 such that,
when g(x) is the slope of the secant line through(x0; f (x0)) and (x; f (x)) ,
then

jg(x) � f 0(x0)j � Ajx � x0j for all x 2 I , x 6= x0.

We discuss an example to illustrate the theorem.

Example 2.19. Let f (x) = x2. Draw the tangent line at the point to the
graph of f at (1; 1) and some secant lines through nearby points.

0.5 1 1.5 2 2.5 3

2

4

6

8

Figure 2.12: Tangent and Secant Lines

Solution: In Figure 2.12 you see the graph off (x) = x2 (solid line),
the tangent line at the point (1 ; 1) (solid line), and �ve secant lines (dashed
lines). Each of them goes through the point (1; f (1)). In addition, they go
through the points (1:4; f (1:4)), (1:8; f (1:8)), (2:2; f (2:2)), (2:6; f (2:6)), and
(3; f (3)), respectively. You should recognize how the slopes of the secant
lines are not that far from the slope of the tangent line, in particular as x
gets closer tox0. You might say, that the di�erence of the slopes is controlled
by a function of the form Ajx � x0j. �

8 In fact, a function is di�erentiable at x0 if and only if there exists a number f 0(x0)
for which the conclusion in this theorem holds. With this we have found a another way
to express that a function is di�erentiable at a point.



60 CHAPTER 2. THE DERIVATIVE

Let us consider an example where the derivative is interpreted as a rate
of change, and where we can compare it with the slope of secant lines.

Example 2.20. At which rate does the volume of a cube change as we
increase its side length?

Solution: You see the picture of a cube in Figure 2.13. A cube with
side length a centimeter (cm) has a volume ofV (a) = a3 cubic centimeters
(cm3). We think of V as a function of a. You see part of this function
graphed in Figure 2.14. If a = 10 cm then the volume is 1000 cm3.

Figure 2.13: A cube
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1010
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Figure 2.14: V (a) = a3

What happens as we increasea by 1 millimeter, i.e., by :1 cm? Your
calculator will show that V (10:1) = 1030:301 cm3. This means that the
volume increased by 30:301 cm3. So, if we start out with a cube of side
length 10 cm and increase the side length by:1 cm, then the volume increases
by 30:301 cm3. This translates into an average rate of change in volume (as
a increases from 10 cm to 10:1 cm) of 30:301 cm3 per :1 cm in side length,
or of 303:01 cm3 per 1 cm. Our calculation is illustrated in Figure 2.14. The
two dots in Figure 2.14 represent the points (10; 1000) and (10:1; 1030:301).
The slope of the secant line through the two dots has slope 303:01.

Let us compare this conclusion with the one derived from the derivative.
In Example 2.42 on page 88 we will show9 that V 0(a) = 3 a2, so that V 0(10) =
300. This means that the tangent line to the graph ofV at a = 10 has slope
300. Interpreted in terms of rates of change this means that the volume

9Instead, you can also use Exercise 44 to arrive at the same conclusion. This takes
some arithmetic skill.
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of the cube increases at a rate of 300 cm3 per 1 cm of side length at the
moment the side length is 10.

In Figure 2.14 we have zoomed in on the point (10; 1000) on the graph,
and this means that you can barely see that the graph is not a straight line
This also means that we cannot make visible anymore the di�erence between
the secant line through the points (10; 1000) and (10:1; 1030:301) and the
tangent line at (10; 1000).

Consider a practical way of enlarging the cube. Add a layer of thickness
:1 cm to three, non-opposing sides. That will add 30 cm3 to its volume. The
volume increases at a rate of of 30 cm3 per :1 cm of thickness of the layer,
or 300 cm3 per 1 cm. Well, we made a mistake. After adding the layers to
the sides, we do no have a cube anymore. Along some edges there will be
a groove. The volume of these grooves will be:301 cm3 if the thickness of
the layer is :1 cm, or 3:01 cm3 per 1 cm. The rate at which the volume of
the groove changes with the thickness of the added layer is the di�erence
between the rate of change and the average rate of change, the slope of the
tangent line and the secant line. �

Exercise 45. Consider a ball of radius 10 cm.

1. Find the volume and the surface area of the ball. (You may consult
your high school math book, or any other source.)

2. By how much does the volume of the ball change if its radius is in-
creased to 10:1 cm?

3. What is the average rate of change in volume as its radius is increased
from 10 cm to 10:1 cm?

4. At which rate does the volume of the ball change when its radius is
10 cm? Explain in practical terms why this rate coincides with the
surface area of the ball.

2.5 Upper and Lower Parabolas

We would like to give a geometric de�nition of di�erentiability and the
derivative. For this we �rst need to understand the geometry of intersecting
and touching lines and parabolas.
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Lines touching Parabolas

Consider a parabolay(x) and a point x0. In Section 1.2 we learned how to
expand y(x) in powers of (x � x0):

y(x) = A(x � x0)2 + B (x � x0) + C:

We considered the linel(x) = B (x � x0) + C and wrote y(x) in the form:

y(x) = A(x � x0)2 + l(x):

The following two properties are apparent:

1. The only intersection point of y(x) and l(x) is (x0; y0), i.e., y0 =
y(x0) = l(x0) and y(x) 6= l(x) if x 6= x0.

2. The parabola lies on one side of the line, i.e.,y(x) � l (x) for all x or
y(x) � l (x) for all x.

Summarizing these properties we make the following

De�nition 2.21. Supposey(x) is a parabola andl(x) a line. We say that
they touch in (x0; y0) if 1 and 2 from above are satis�ed.

Example 2.22. Find the line l(x) which touches the parabola

y(x) = x2 � 2x + 3

in the point (2 ; 3).
Using the formulas in (1.13) (see Section 1.2), we �nd the expansion of

y(x) in powers of (x � 2):

y(x) = ( x � 2)2 + 2( x � 2) + 3 :

Setting l(x) = 2( x � 2) + 3 = 2 x � 1, we �nd the desired line. In Figure 2.15
you see the parabola, the line, and the point they have in common. �

With a little more work, one can show

Proposition 2.23. Given a parabolap(x) and a point (x0; y0) on it. There
exists exactly one linel(x) which touches the parabola in(x0; y0).

Exercise 46. Find the line which touches the parabola

p(x) = 3 x2 � 5x + 2

in the point (2 ; 4).
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Figure 2.15: A line touching a parabola

Two Parabolas touching each other

Let us investigate how parabolas intersect. Suppose you are given two
parabolas:

p(x) = a1x2 + b1x + c1 and q(x) = a2x2 + b2x + c2:

To �nd their intersection points we equate p(x) and q(x). In other words,
we look for the roots of

p(x) � q(x) = ( a1 � a2)x2 + ( b1 � b2)x + ( c1 � c2):

The highest power ofx in this equation is at most 2 (this happens if (a1 �
a2) 6= 0), and this means that it has at most two solutions. We consider an
example in which we encounter the behaviour which we are most interested
in. You will study other possible intersection behaviour in the exercises.

Example 2.24. Investigate how the following two parabolas intersect:

p(x) = x2 � 2x + 3 & q(x) = � x2 + 6x � 5:

We graphed the parabolas in Figure 2.16, and you can compare the
following calculation with the picture. We �nd the intersection points of the
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Figure 2.16: A line separating two parabolas

parabolas:

p(x) � q(x) = 2 x2 � 8x + 8 = 2( x � 2)2:

The parabolas intersect in exactly one point, (2; 3). In fact, p(x) � q(x) � 0,
so that p(x) � q(x) for all x. Equality holds only for x = 2. Geometrically
speaking, the two graphs touch in the point (2; 3), but they do not cross.

Expanding p(x) and q(x) in powers of (x � 2), we �nd

p(x) = ( x � 2)2 + (2 x � 1) & q(x) = � (x � 2)2 + (2 x � 1):

The lines which touch the parabolasp(x) and q(x) in the intersection point
(2; 3) are the same, namelyl(x) = 2 x � 1. This line separates the two
parabolas in the sense that the parabolap(x) lies above the line, and the
parabola q(x) lies below it. In Figure 2.16 the line l(x) is shown as a dotted
line. �

There are two essential features to the intersection behaviour in the
example.

1. The parabolasp(x) and q(x) touch in (x0; y0), i.e. p(x) � q(x) for all
x, or p(x) � q(x) for all x, and p(x) = q(x) if and only if x = x0.10

10 We could have required the inequalities on some open interval which contains x0
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2. There is a line l(x) which separatesp(x) and q(x), i.e., q(x) � l (x) �
p(x) for all x, or p(x) � l (x) � q(x) for all x.

With some e�ort one can show:

Proposition 2.25. Supposep(x) and q(x) are parabolas which intersect in
the point (x0; y0). The parabolas touch in (x0; y0) and they are separated
by a line if and only if one parabola is open upwards, one parabola is open
downwards, and (x0; y0) is their only intersection point. The line which
separates the parabolas is unique. It is the line which touchesp(x) and q(x)
in (x0; y0).

For completeness sake, let us look at the other possible intersection be-
haviours. Instead of touching at an intersection point, the parabolas could
cross. You probably have the right intuitive ideas what that means, but to
give you the means of checking this property, we formalize the idea. The
graphs of two functions p(x) and q(x) cross at x0 if p(x0) = q(x0) and
(p(a) � q(a))( p(b) � q(b)) < 0 for all a in an interval ( A; x 0) and b in (x0; B ).
The intervals are assumed to be non-empty.

In the following exercise you can observe all of the di�erent behaviours.

Exercise 47. Find the intersection points for each pair of parabolas. De-
cide for each intersection point whether the parabolas touch or cross. If
the parabolas touch in an intersection point, decide whether there is a line
separating the parabolas, and if so, �nd the equation of the separating line.
Provide a sketch for the intersection behaviour of each pair of parabolas.

1. p(x) = x2 � x + 1 and q(x) = 2 x2 � 3x + 2.

2. p(x) = x2 � 3x + 2 and q(x) = x2 � 5x + 6.

3. p(x) = x2 � 4x + 4 and q(x) = 2 x2 � 4x + 5.

4. p(x) = x2 � 2x + 1 and q(x) = � x2 + 2x + 3.

5. p(x) = x2 � 3x + 3 and q(x) = � x2 + 5x � 5.

Exercise 48. Suppose two parabolasp(x) and q(x) intersect in the point
(x0; y0) without crossing. Show that (x0; y0) is the only intersection point
for these parabolas.

instead. One can show that under the given circumstances these two conditions are the
same.
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Di�erentiability via Upper and Lower Parabolas

We like to give another interpretation for the concept of di�erentiability, the
tangent line, and the derivative. For a function f (x) to be di�erentiable at
an interior point x0 of its domain, we asked for a linel(x) and a (necessarily
non-negative) number A, such that

jf (x) � l (x)j � A(x � x0)2

for all x in some open intervalI around x0. The inequality may be written
in a di�erent, equivalent form:

� A(x � x0)2 � f (x) � l (x) � A(x � x0)2:

After adding l(x) everywhere, it reads

� A(x � x0)2 + l(x) � f (x) � A(x � x0)2 + l(x):(2.24)

Note that l (x) is the tangent line to the graph of f at the point ( x0; f (x0)),
and that it is given by the formula

l(x) = f 0(x0)(x � x0) + f (x0):

The left and right most terms in (2.24) are parabolas, and with the expres-
sion for l (x) substituted we denote them by

q(x) = � A(x � x0)2 + m(x � x0) + f (x0)

p(x) = A(x � x0)2 + m(x � x0) + f (x0):

With this notation (2.24) reads

q(x) � f (x) � p(x):(2.25)

The parabola q(x) is open downwards and the parabolap(x) is open
upwards. They touch each other in the point (x0; f (x0)), and they are
separated by the tangent line l(x) = m(x � x0) + f (x0). Summarizing
the above we have the following geometric formulation for the concept of
di�erentiability. Expressed informally:

� A function is di�erentiable at an interior point x0 of its domain, if,
on some open interval aroundx0, its graph is trapped between two
parabolas which touch each other in the point (x0; f (x0)). The unique
line which separates the parabolas is called the tangent line to the
graph of f at x0, and its slope is called the derivative of f at this
point. This slope is denoted byf 0(x0).
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In formal mathematical language, this statement reads as follows:

Proposition 2.26. Supposef is a function and x0 is an interior point of
its domain. Then f is di�erentiable at x0 if and only if there exist parabolas
p(x) and q(x), one open upwards and one downwards, which touch each
other in (x0; f (x0)) such that

q(x) � f (x) � p(x)

for all x in some open interval aroundx0.

Note that in this proposition the tangent line to the graph of f at x0 is
the unique line which separates the parabolas, and its slope isf 0(x0), the
derivative of f (x) at x0.

Strictly speaking, we have only shown the `if ' part of the proposition.
We leave the `only if ' part to the motivated audience. The advantage of the
proposition is that it expresses di�erentiability in a geometric way. It gives
you a concrete picture which you can think about. It provides you with
some intuition. Using the example of the exponential function f (x) = ex ,
we illustrated the statement that f is di�erentiable at x = 1 in the language
of the proposition in Figure 2.3 on page 39.

Let us illustrate the discussion with an example and draw the corre-
sponding picture.

Example 2.27. Find the tangent line and upper and lower parabolas to
the graph of f (x) = sin x at x0 = �= 4. Graph all of the above.

Solution: We learned that sin0x = cos x, so that cos(�= 4) =
p

2=2 is
the slope to the tangent line in question. Noting that sin(�= 4) =

p
2=2, we

�nd the point-slope formula for the tangent line:

l (x) =

p
2

2

�
x �

�
4

�
+

p
2

2
:

In our discussion in Example 2.11, we saw that for our functionf (x) and
the line l(x):

jf (x) � l (x)j � A(x � x0)2

with A = 1 and jx � x0j < �= 4. This means that we can trap the graph of
sinx between the parabolas (see (2.24))

q(x) = � A(x � x0)2 + f 0(x)(x � x0) + f (x0)

= �
�

x �
�
4

� 2
+

p
2

2

�
x �

�
4

�
+

p
2

2
;
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Figure 2.17: Sine Function and Tangent Line between two Parabolas

and
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x �
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2
:

The graph of f (x) (solid line), the tangent line (long dashes) and the parabo-
las (short dashes) are shown in Figure 2.17. �

Exercise 49. Let f (x) = cos x and x0 = �= 6.

1. Find the tangent line to the graph of f at the point ( x0; f (x0)).

2. Find the parabolas p(x) and q(x) which touch at ( x0; f (x0)), so that
the graph of f is trapped in between them, at least as long asjx � x0j <
�= 4.

3. Use technology to graph the functionsf , l , p, and q accurately.

Exercise 50. Let f (x) =
p

3x + 2 and x0 = 5.

1. Find the tangent line to the graph of f at the point ( x0; f (x0)).
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2. Find the parabolas p(x) and q(x) which touch at ( x0; f (x0)), so that
the graph of f is trapped in between them. Hint: Use A from Exer-
cise 41.

3. Use technology to graph all of the above accurately.

Using the formulation of di�erentiability from Proposition 2.26, we would
like to given another interpretation of the statement that the distance be-
tween the graph and the tangent line is `small'. You see in Figure 2.17,
and in other pictures where we drew touching parabolas, how the parabolas
`hug' the line which separates them. On some interval around the point at
which the parabolas touch, the graph of the function and the tangent line
are `squeezed' in between these two parabolas. This is how close the graph
and the tangent line have to be to each other.

The intuitive, geometric picture to understand di�erentiability and the
derivative may appeal to you. Still, there are bene�ts to the way in which
these concepts are explained in De�nition 2.9. The de�nition is formulated
so that no other concepts have to be developed �rst. Without any other
preparation you can just write it down. That de�nition is also analytic, and
this means that you can manipulate it and use it in calculations.

2.6 Other Notations for the Derivative

There are di�erent notations for the derivative of a function. Physicists will
indicate a derivative with respect to time by a dot. E.g., if x is a function
of time, then they will write _x(t) instead of x0(t). Leibnitz' notation for the
derivative of a function f of a variable x is df

dx . We will use it frequently.
Using this notation, Theorem 2.12 on page 52 translates into the statement:

If y(x) = ex ; then
dy
dx

= y or
dy
dx

= ex :

A reformulation of Theorem 2.13 on page 52 is:

If y(x) = ln x; then
dy
dx

=
1
x

:

This notation is not always speci�c enough. The expressiondy=dx stands
for the derivative of y with respect to x, and that is a function. The ex-
pression does not tell wheredy=dx is evaluated. To be speci�c about this
aspect, it makes sense to write (compare Example 2.11 on page 50):

If y(x) = sin x; then
dy
dx

(x) = cos x:
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In this notation x plays two roles. It is the name of the variable of y as
well as the name of the variable of the derivative ofy. This in acceptable
because it won't lead to confusion. Instead ofdf

dx (x) we also write d
dx f (x).

This is particularly convenient if f stands for a larger expression as in

d
dx

sinx = cos x or
d

dx
ex = ex :

Exercise 51. Find the derivatives

(1)
d

dx
ln x (2)

d
dx

p
8x � 4 (3)

d
dx

(4x2 � 3x + 5) (4)
d

dx
4e3x

2.7 Exponential Growth and Decay

We like to give an application of the concept of the derivative. Suppose
you culture bacteria in a laboratory. You assume that the rate at which
the population grows is proportional to the populations. This is called the
Malthusian Law. To express this mathematically, let A(t) be the number of
bacteria in the sample at time t. Then you are asserting that

A0(t) = aA(t)(2.26)

for some constanta.
This equation is an example of adi�erential equation . The unknown is

a function, and the equation relates the functions and its derivative. More
speci�cally, (2.26) is an ordinary �rst order linear di�erential equation with
constant coe�cients. A solution of a di�erential equation is a function which
satis�es the equation.

In Theorem 2.12 on page 52 we stated that the only solutions of (2.26)
are of the form A(t) = ceat for some constantc. We can �nd c by plugging
t = 0 into the equation, A(0) = c. So c is the number of bacteria at time
t = 0, and, setting A(0) = A0,

A(t) = A0eat :(2.27)

Next we can determinea, at least if we also know the population at another
time t1. So we suppose that

A1 = A(t1) = A0eat1 ;(2.28)

where A1 is known. Then A1=A0 = eat1 . Applying the natural logarithm
function to both sides of the equation (it is the inverse of the exponential
function, see De�nition 1.20 on page 27) we �nd ln(A1=A0) = at1, and

a =
1
t1

ln(A1=A0):(2.29)
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Remark 5. We called the constant a the relative growth rate, or growth
rate for short. Its physical dimension is \per time unit." If time is measured
in hours, then the dimension ofa is per hour. The units of A0 in the example
are bacteria, so the units ofA0(t) are bacteria per hour.

Let us at a numerical example.

Example 2.28. Suppose that in the beginning of your experiment you es-
timate that your culture contains 850 yeast bacteria. Ten minutes later the
population has grown to 1200 bacteria. You assume that the same growth
rate continues for 50 more minutes. What is the population 40 minutes
after you started the culture? At which time do you expect that the culture
contains 2500 bacteria?

Let us work out the answers. We sett0 = 0 and t1 = 10. By assumption,
A0 = 850 and A1 = 1200. This means that

a =
1
t1

ln(A1=A0) =
1
10

ln(1200=850) = :034484;

or that the population grows at a rate of 3:4484% per minute. The �rst
question is about A(40). Plugging in our data we �nd

A(40) = 850e:034484� 40 = 3376:5;

so that you expect about 3376 bacteria in your culture 40 minutes into your
experiment.

The second question is, at which timet do you expect that A(t) = 2500?
This means that we have to solve the equation

A(t) = 850e:034484t = 2500 or e:034484t = 2500=850

for t. Applying the natural logarithm function to both sides of the equation
you see that

:034484t = ln(2500=850) or t = 31:2844 minutes.

You should verify these calculations on your calculator. �

Exercise 52. Suppose a culture of yeast bacteria grows at a constant rate
for one hour. Initially you have 3; 000 bacteria, and 15 minutes later you
have 20; 000.

1. What is the growth rate of the population?
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2. What is the population 40 minutes after you started the culture?

3. When will the population reach 1; 000; 000?

More generally than above, we have:

Proposition 2.29. The function A(t) = A0ea(t � t0 ) is the unique solution
of the initial value problem

A0(t) = aA(t) and A(t0) = A0:

Exercise 53. Show the proposition. Hint: Modify the arguments which we
used above.

Exercise 54. Suppose a given population doubles within an hour. What is
the growth rate?

You may say, that by now you have an explicit formula for A(t) and
know everything about the population of bacteria at any time. Still, if you
apply your conclusion to real life, then you should be aware that we only
modeled population growth. If we apply the conclusions to real life, then
we may have to be cautious.

To be more speci�c, let us consider two functions. Let A(t) denote
the size of the population in our mathematical model, andB (t) the actual
population. For certain purposes it is asserted, that we can identify these
two functions. E.g., we make this assertion if we like to estimate the pop-
ulations of a sizeable, homogeneous population of microbes grown under
controlled and constant conditions. Then we think, and experimental evi-
dence con�rms, that the Malthusian law ( A0 = aA) describes the dynamics
of population growth closely enough. For practical purposes, we think that
we may identify A(t) and B (t).

In certain respects, the two functions are very di�erent from each other.
The value for B (t) is always a natural number and the one ofA(t) typically
is not. So A(t) does not tell us the exact population at a given time. The
function B (t) gives the exact value for the size of the population at any
time. It also shows when there is an increase (or decrease) of the size.

Given a and A0, we know A(t) exactly, but typically it is impossible to
know B (t) precisely. There is no way to keep track of the exact number of
bacteria at all times in a population which is in the thousands.

In our examples we have seen how to �nd the growth ratea for a popu-
lation 11. Assuming that populations growth followed the Malthusian law,

11 A fairly good estimate for the growth rate a in obtained by �nding the average rate
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we only needed to know the size of the population at two di�erent times.
The accuracy with which we know a depends on the accuracy with which
we the size of the population at those two times.

In an experiment, the growth rate will depend on the food supply, the
temperature, the size of the population, the concentration of chemicals pro-
duced by the population, and more factors. It is quite di�cult to keep them,
and with this the growth rate constant. If the growth rate depends on time
and the population, then a is a function of these variable, and that substan-
tially changes the solution for the di�erential equation for A(t). The growth
rate will also change with time, if the populations consists of several smaller
populations, and each of them grows at a di�erent rate. This occurs if the
population is not homogeneous. Still, if we can keep the growth rate `nearly'
constant, then general mathematical theory tells us thatA(t) is `rather close'
to an exponential function. Only real life comparison between the mathe-
matical model and the laboratory experience can (and does) con�rm that
the model �ts reality well.

The essential statement is, that the Malthusian law

A0(t) = aA(t)

reects essential elements of the dynamics of population growth. It says
that the rate at which a population grows is proportional to the size of the
population. Under idealized circumstances and over shorter periods of time
one may assume that the growth ratea is constant, and this leads to the
conclusion that the size of a population grows exponentially.

Outside the laboratory population growth is much more complicated.
If you try to �nd a function which tells you about the human population
in the future, then you need to take many more aspects into account. It
is essential that you distinguish three periods in life, the time before the
reproductive age, the reproductive age, and the time after this. The number
of females is more important than the number of males. Social values and
economical interest a�ect the rate of reproduction in speci�c parts of the
population. Food supply, sanitary conditions, and medical care inuence the
survival rate of newborns. Progress in medicine, the supply of doctors and
medications a�ect the life expectancy of individuals. National and ethnic
values and legislation encourage or discourage reproduction. Most of these
factors are di�cult to measure and incorporate in a weighted fashion into

of change b = ( A(t0) � A(t1))=(t0 � t1) of the function A(t) for t between t0 and t1.
According to our discussion about slope of tangent lines and secant lines in Section 2.4,
A0(t0) = aA(t0) is close to b, at least if t1 is close to t0
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the equation. They also change considerably with time. Still, the abstract
statement made in Equation (2.26) remains true, but it does not apply to
the population as a whole. It needs to be applied in a very di�erentiated
way with a lot of attention to detail before one can hope to understand the
growth of the human population.

Carbon-14 Dating

Let us consider the method of carbon-14 dating as another example of ex-
ponential growth, or better exponential decay. This method was discovered
by Willard Libby around 1949. The situation is as follows. Cosmic rays
bombard the atmosphere of the earth, and produce, through a complicated
process, carbon-14 (14C). It is called a radiocarbon as it decays radioac-
tively. Living substances, like wood or bones, absorb carbon-14 during their
life time. At the same time, radiocarbons disintegrate, and in the living sub-
stance it comes to an equilibrium where as much radiocarbon is absorbed as
disintegrates. The concentration of 14C is characteristic for the substance.
It is also assumed that the bombardment with cosmic rays has been con-
stant for a long period of time, so that the concentration in substances is
independent of the time during which they were alive. (This has changed
recently with the atmospheric tests of nuclear devices, which increased the
concentration of radiocarbons in the atmosphere.) When the organism dies,
no more radiocarbons are absorbed. Radiocarbons decay and change to non-
radioactive substances. Physics and experience tell us that the number of
14C molecules which decay in some time period is proportional to the num-
ber of molecules present. IfA(t) is the number of 14C molecules in a sample,
then A0(t) is the rate at which A(t) changes. If we call the proportionality
factor � a, then we again end up with the equation

A0(t) = � aA(t):

We conclude that the solution for this di�erential equation is of the form

A(t) = A0e� at(2.30)

where A0 is now the number of 14C molecules in the sample at the time
of death. We used� a, instead of a in the exponential growth example, to
indicate that A0(t) is negative. We call a the rate of decay. Once more, this
explicit expression forA(t) can be used to provide us with lots of information.
All we need to know areA0 and a.

Usually it is not feasible to count the number of radioactive molecules in
a sample. It is much easier to measure the number of decays in one unit (e.g.,
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one gram) of the substance per time unit (e.g., one minute). This number
is proportional to the number of radioactive molecules in the sample. If we
denote this number by A(t), then this function still satis�es the di�erential
equation in (2.30), only that now A0 denotes the number of decays (in one
unit of the substance per time unit) at time t = 0. Context dictates which
meaning we will assign toA(t).

For a radioactive substance it is typical to provide the half-life. This is
the time in which half of the substance decays. For14C the half-life is about
5568 years. If you start out with 1mg of it, then after 5568 years only half
of it is left. Knowing the half-life allows us to calculate the rate of decay. If
T is the half-life for a radioactive substance, then

1
2

= e� aT or a =
ln 2
T

:(2.31)

For 14C the value for a is about 0:000124488, as you may verify on your
calculator. As we used years to measure time, this means that approximately
0:0124488% of the14C decays per year. The word `approximate' refers to
the fact that the rate of decay is approximately the amount which decays in
one unit of time, as explained in Theorem 2.18 on page 59.

You need a second piece of information. It has been measured that
one gram of living wood produces 6:68 14C disintegrations per minute, or,
more precisely, that this was true for wood which died before nuclear testing
began. This provides us withA0, if we need it.

Example 2.30. Let us consider as example a piece of wood found in the
burial chamber of the mummy (compare Example 5.16 on page 287). Sup-
pose you measure 1:8 disintegrations of carbon-14 per gram and minute in
the sample piece of wood. How old is the piece of wood?

Solution: If t1 is the age of the piece of wood, andA0 is the amount of
radiocarbon in the wood at time t0 = 0, then we are saying that

A(t1) = 1 :8 = A0e� ln 2
5568 t1 :(2.32)

We like to solve this equation for t1. We divide the second equality by
A0 = 6 :68, apply the natural logarithm, and �nd

ln
1:8
6:68

= �
ln 2
5568

t1 or t1 = �
5568
ln 2

ln
�

1:8
6:68

�
= 10; 533:8;(2.33)

as you should verify. This means that the piece of wood should be about
10; 500 years old. You jump to the conclusion that the mummy is that old
as well. Check your book on world history! �
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Exercise 55. A piece of wood weighing 7:4 grams produces 23:47 disinte-
grations of carbon-14 per minute. How old is it?

Exercise 56. You measure the number of radio active decays in a soil sam-
ple which was taken near Chernobyl after the radio active fallout settled.
Now, 10 years after the accident, the sample shows 370 decays per minute.
Records indicate that seven years ago (i.e., three years after the accident)
the same sample produced 430 decays per minute. Assume that there is
only one kind of radio active substance in the sample.

1. What is the half-life of the radio active substance in the sample?

2. How many decays would you have measured right after the accident?

3. How many more years will it take until the sample will only produce
25 decays per minute?

You may ask why the equation

A0(t) = aA(t)

is of such great importance. As we emphasized, it expresses that the rate
of change ofA(t) is proportional to A(t). This is the principal assumption
made for many real life processes. It is assumed that, within limitations, this
happens when your body absorbs an orally administered medication. This
happens when your liver eliminates toxins from your blood. This is how
a contagious disease spreads in a population (initially!). This is how the
value of money diminishes with ination. Typically other factors will also
e�ect A0, at least after some time. E.g., a substantial part of a population
may develop an immunity to the disease. This will change the equation.
Taking such changes into account makes the equation more complicated,
and the solution will look quite di�erent. We discuss one modi�cation of
the Malthusian law in the next section.

2.8 More Exponential Growth and Decay

More generally than in (2.26), consider the di�erential equation

f 0(t) = af (t) + b;(2.34)

where a and b are constants, anda 6= 0.
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Theorem 2.31. Functions of the form f (t) = ceat � b=a are solutions of
the di�erential equation in (2.34), and every solution of (2.34) is of this
form. Here c denotes an arbitrary constant.

We obtain a unique solution if we add an initial condition to the di�erential
equation in (2.34).

Theorem 2.32. The function

f (t) =
�

y0 +
b
a

�
ea(t � t0 ) �

b
a

is the unique solution of the initial value problem

f 0(t) = af (t) + b and f (t0) = y0:

Exercise 57. Work out the formula in Theorem 2.32 by using the conclu-
sion of Theorem 2.31.

Proof of Theorem 2.31. Adding a constant to a function moves the graph
vertically, and this does not change the derivative of the function. This is
also implied by (2.37), which we discuss later. Iff (t) = ceat � b=a, then

f 0(t) =
d
dt

�
ceat �

b
a

�
= aceat = a

�
f (t) +

b
a

�
= af (t) + b;

so that f (t) satis�es (2.34).
We show that every solution of (2.34) is of the formceat � b=a, for some

constant c. Set

g(t) = f (t) +
b
a

resp., f (t) = g(t) �
b
a

Then

g0(t) = f 0(t) = af (t) + b = a
�

g(t) �
b
a

�
+ b = ag(t):

According the Theorem 2.12,g(t) is of the form ceat , so that f is of the form
claimed in the theorem.

Let us apply these ideas to solve some problems. The important aspects
are to translate the given information into a mathematical equation. The
rest will be routine calculation.
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Example 2.33. On graduation day your student loan has a balance of
$15,000. Interest is added at a rate of:5% per month, and you are re-
paying the loan at a rate of $ 200.00 per month. How long will it take you
to repay the loan?

Solution: As variable we use time, and we denote it byt. We measure
time in months, because this is the way in which the information is given to
us. We set t = 0 at the time of graduation. This is the time at which you
start to repay the loan. Denote the balance of your loan at timet by B (t).
Let us determineB 0(t), the rate a which the balance of the account changes.
The balance increases due to interest charges, and the rate at which this
happens is:005B (t). Secondly, the balance decreases at a rate of $200.00 per
month due to payments which you make. These two contributions determine
how B (t) changes, and we conclude that

B 0(t) = :005B (t) � 200:

In addition we have that B (0) = 15 ; 000. We apply Theorem 2.32 with
f (t) = B (t), t0 = 0, a = :005, b = � 200, andy0 = 15; 000. The conclusion
of the theorem is that

B (t) =
�

15; 000 +
� 200
:005

�
e:005t �

� 200
:005

= � 25; 000e:005t + 40; 000:

The problem asked us to �nd the time T for which B (T) = 0, i.e., the
time at which you paid the loan in full. This provides us with the following
equation for T:

0 = � 25; 000e:005T + 40; 000 or
40
25

= e:005T :

Then

T =
1

:005
ln

�
40
25

�
= 94:

In the �nal analysis, you repaid your loan in 94 months, or 7 years and 10
months. Your total payments were $18,800, so that you paid the principal
plus $3,800 in interest. �

Exercise 58. You are saving money at a rate of $1,000.00 per month to-
wards the down payment of your family residence. Your bank pays interest
at a rate of :6% per month. But, your spouse keeps spending the money
at a rate of :2% of the account balance per month. (E.g., if the balance is
$40,000, then the spouse spends the money at a rate of $80.00 per month.)
How long will it take to accumulate a down payment of $80,000?
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Exercise 59. You are absorbing a medication at a rate of 3 mg per hour.
(You can keep this rate constant with a skin patch.) The liver eliminates the
medication at a rate of 4% per hour. I.e., if there are 30 mg in your body,
then the liver eliminates the medication at a rate of 1:2 mg/hr. Denote by
A(t) the amount of medication in your body t hours after you started taking
the medication.

1. Which di�erential equation does A(t) satisfy?

2. Find A(0) and A(t) for any time t.

3. For which value of A is your intake of medication the same as the
amount eliminated by the liver?

4. Which amount of medication in your body will not be exceeded?

5. How long does it take until the amount of medication in your body
reaches 65 mg?

Example 2.34 (Newton's Law of Cooling). Suppose you have an ob-
ject whose temperature is di�erent from the temperature of its surround-
ings. With time, the temperature of the object will approach the one of
its surroundings. We discuss how this happens, at least under idealized
circumstances.

Think of the object as the co�ee in your cup which you keep on your
desk. You stir the co�ee gently so that the temperature in the cup remains
homogeneous and almost no energy is added through the process of stir-
ring.12 Denote the temperature of the object (your co�ee) by T. It is a
function of time, so that we write T(t). Newton's law of cooling says that
the rate at which the heat is transferred, and with this the rate of change
of temperature of the co�ee, is proportional to the temperature di�erence.
If K is the temperature of the surroundings, then

T0(t) = a(T(t) � K ):(2.35)

12 The physics of heat transfer changes substantially if you take a solid object, such as
a turkey in the oven. The temperature in the solid will not be homogenous, the ourside
warms up much faster than the inside. In addition, the speci�c heat (the amount of energy
needed to increase the temperature of one unit of the material by one degree) varies. It is
di�erent for fat, protein, and bone. Furthermore, the speci�c heat is highly temperature
dependent for substances like protein. That means, a in (2.35) depends on the temperature
T . All of this leads to a signi�cantly di�erent development of the temperature inside a
turkey as you roast it for your Thanksgiving dinner.
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The di�erential equation in (2.35) is just the one in (2.34) is a slightly
disguised form. After multiplying out the parentheses we get

T0(t) = aT(t) � aK;

so that the relation to the equation in (2.34) is made by setting b = � aK .
Let us work out a numerical example. At time t = 0, just after you

poured the co�ee into your cup, its temperature is 95 degrees Celsius. Five
minutes later the temperature has dropped to 80 degree, while you stir
it slightly and patiently. The room temperature is 25 degrees. You feel
comfortable to start sipping the co�ee once the temperature has dropped to
70 degrees.

1. Determine the function T(t).

2. How much longer do you have to wait before you can start sipping
your co�ee?

Solution: To apply Theorem 2.32, we sett0 = 0, y0 = 95, and K = 25.
Note that � b=a= K . Putting all of this into the formula for the solution of
the initial value problem, we get that

T(t) = (95 � 25)eat + 25 = 70 eat + 25:

To determine a we use that

T(5) = 80 = 70 e5a + 25;

and we conclude that a = 1
5 ln

� 55
70

�
� � :0482. Using these data, Equa-

tion (2.35) says that the temperature of the co�ee drops at a rate of about
:048 degrees per minute for each degree of di�erence between the tempera-
ture of the co�ee and the room temperature.

Having a numerical value for a gives us an explicit expression for the
temperature T as a function of t:

T(t) = 70e� :0482t + 25:

We like to �nd out the time t1 for which

T(t1) = 70e� :0482t1 + 25 = 70 :

Solving the equation for t1, we �nd that t1 � 9:17. That means we can start
drinking the co�ee 9:17 minutes after pouring it, or that we have to wait
about another 4 minutes before we can enjoy it. �
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Exercise 60. You buy co�ee at a convenience store to drink on your way
to school. Initially its temperature is 70 degrees. The temperature in your
car is 28 degrees, and after 15 minutes the temperature of the co�ee is 55
degrees. At which time will the temperature drop to 40 degrees?

Exercise 61. A chemical factory is located on the banks of a river. Down
stream from the factory is a lake, and the river is the only contributor to
the lake. Assume that the amount of water carried by the river is the same
all year around, and the amount of water in the lake is 10 times the amount
of water carried by the river per year. In negotiations which the EPA, the
owner has agreed to an acceptable level of 2:5 mg per m3 of a pollutant in
the lake. After a major accident the level has risen to 15 mg per m3. As a
remedy, the factory owner proposes to reduce the emission of pollution so
that the level of pollutant in the river is only 1 :5 mg per m3. It is assumed
that the pollutant is distributed uniformly in the lake at any time.

1. Let P(t) denote the amount of pollutant (measured in mg per m3) in
the lake at time t. Let t0 = 0 be the time just after the accident and
at which the clean-up strategy is implemented. State the initial value
problem for P(t).

2. Find the function P(t).

3. At which time will the level of pollution be back to 2 :5 mg per m3?

2.9 Di�erentiability Implies Continuity

The basic observation made in this section is used in several places in this
manuscript, but mostly within proofs. So you may consider it as a resource
which you call upon whenever needed.

Di�erentiability of a function f at a point x0 gives us good control over
the values of the function at all points near x0 in terms of f (x0) and f 0(x0).
Speci�cally, we have positive numbersA and d, such that the the estimate

�
� f (x) � [f (x0) + f 0(x0)(x � x0)]

�
� � A(x � x0)2

holds for all x with jx � x0j < d . This is not particularly explicit. We like to
get an estimate for jf (x) � f (x0)j. The next theorem provides an estimate
in terms of A, d, f 0(x0), and jx � x0j.
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Theorem 2.35. 13 Suppose thatf is di�erentiable at x0, and A and d are
as above. Then

jf (x) � f (x0)j � (jf 0(x0)j + Ad)jx � x0j(2.36)

for all x with jx � x0j < d .

Paying less attention to details, if f is di�erentiable at x0, then there
exist numbers C and d > 0 such that

jf (x) � f (x0)j � Cjx � x0j

for all x with jx � x0j < d .

Example 2.36. Let f (x) = sin x and x0 = �= 6. Then f (x0) = 1 =2 and
f 0(x0) = cos(�= 6) =

p
3=2. We saw that we may useA = 1 and any d, see

Example 2.11. Setd = �= 12, then we �nd that jf 0(x0)j + Ad < 1:13. The
theorem says that

�
�
�
�sinx �

1
2

�
�
�
� � 1:13

�
�
�x �

�
2

�
�
�

as long asx 2 (�= 12; 3�= 12).

Exercise 62. Supposef , C = jf 0(x0)j + Ad and d are as in the theorem.
Show that the graph of f is trapped between two lines over the interval
(x0 � d; x0 + d). These lines intersect in the point (x0; f (x0)) and have slope
C, resp., � C.

Proof of Theorem 2.35. Di�erentiability of the function f at x0 assures us
of the existence of numbersA and d > 0, such that

f 0(x0)(x � x0) � A(x � x0)2 � f (x) � f (x0) � f 0(x0)(x � x0) + A(x � x0)2

for all x with jx � x0j < d . The inequality is a variation of the one in (2.7).
For a moment, set h = x � x0 and x = x0 + h. With this substitution, our
previous inequality reads

f 0(x0)h � Ah2 � f (x0 + h) � f (x0) � f 0(x0)h + Ah2:
13 We are not showing that di�erentiability at a point x implies continuity at this point.

The strong notion of di�erentiability which we are using, implies that a function is also
strongly continuous at the point under consideration. Technically speaking, a Lipschitz
condition of order 2 implies one of order 1. We will introduce strongly continuous functions
when we discuss integration, and when we look for a class of functions for which the
Fundamental Theorem of Calculus holds.
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It follows that

�j f 0(x0)jjhj � Ah2 � f (x0 + h) � f (x0) � j f 0(x0)jjhj + Ah2:

Basic properties of the absolute value, see Section 5.2, and the assumption
that jhj < d , tell us that

jf (x0 + h) � f (x0)j � j f 0(x0)hj + Ah2

= ( jf 0(x0)j + Ajhj)jhj

� (jf 0(x0)j + Ad)jhj:

Reverting to our original notation, we have shown that

jf (x) � f (x0)j � (jf 0(x0)j + Ad)jx � x0j;

and this is what we claimed.

2.10 Being Close Versus Looking Like a Line

A minor correction or adjustment of your intuition may be advised in case
you developed the misconception that being close to a line is synonymous
with looking like a line. We said that a function f is di�erentiable at a point
x0 if the graph of f is `close to' a line near the point (x0; f (x0)). We went on
to make this expression `being close' precise. Based on the examples so far,
you may have gotten the impression that this means that the graph \looks
like" a line when you zoom in on the point14. In fact, this was the case in
previous examples. Still, this is not what the de�nition says.

We illustrate the di�erence between being close to a line and looking like
a line in an example. The function is f (x) = x2 sin(1=x). The expression
makes no sense forx = 0, and we set f (0) = 0. This function is di�erentiable
at x = 0. Setting l(x) = 0, we see that

jf (x) � l (x)j = jf (x)j � x2

for all x 2 (�1 ; 1 ), so that the estimate in the de�nition of di�erentiability
holds. In particular, the tangent line to the graph at (0 ; 0) is the x-axis.

14 We do not attempt to de�ne what it means to look like a straight line. It may be
intuitively clear, but when you try to make this mathematically precise, then you face a
formidable task. For the purpose of the discussion we ignore the problems which arise
when we want to really zoom in closely on a point, and when we exceed the abilities of
the graphing software. This problem might render our discussion useless to begin with.
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Figure 2.18: f (x) = x2 sin(1=x)
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Figure 2.19: f (x) = x2 sin(1=x)

You see the graph of the functionf in Figures 2.18 and 2.19 over two
di�erent intervals. Apparently, the graph is trapped between the upper
parabola p(x) = x2 and the lower parabolaq(x) = � x2. As you can almost
see them, particularly in the second picture, we abstained from showing
them. Whether we use the calculation from above or the picture, we are
convinced of the di�erentiability of the function at x = 0. In our well
speci�ed sense, the graph of the function is close to thex-axis. On the
other hand, by no stretch of imagination will you say that the graph of the
function looks like a line.

You may think of this example as being esoteric. In a way it is. In this
sense it is forgivable if you start out with an intuition which needs upgrading
later. This is part of learning.

2.11 Rules of Di�erentiation

There are formulas for calculating the derivative of a composite function
from the derivatives of its constituents. These formulas are the topic of
this section. These formulas, together with the knowledge of the derivatives
of some basic functions, turn the process of di�erentiation for many func-
tions into an algorithm, a rather mechanical process. You can do it even
on the computer, which means that no \understanding" is required. You
are expected to learn the basic rules, be able to apply the accurately, and
practice many examples. In the last section of this chapter we summarize
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the computational results of this section. We collect the rules established in
this section and tabulate the derivatives of many of the important functions
which we considered.

2.11.1 Linearity of the Derivative

The �rst two rules state that di�erentiation is compatible with addition
of functions and multiplication with a constant. In a more mathematical
language one says that di�erentiation is linear. Let f and g be functions,
and assume that both of them are di�erentiable at x. Let c be a real number.
Then f + g and cf are di�erentiable at x and their derivatives are given by

(f + g)0(x) = f 0(x) + g0(x) and (cf )0(x) = cf 0(x):(2.37)

In Leibnitz' notation this reads

d
dx

(f + g)(x) =
df
dx

(x) +
dg
dx

(x) and
d

dx
(cf )(x) = c

df
dx

(x):(2.38)

You may prefer to remember these rules in words. The derivative of a
sum of functions is the sum of the derivatives of the function. The derivative
of a scalar multiple of function is the multiple of the derivative.

Example 2.37. Di�erentiate

h(x) = x2 + sin x:

We set f (x) = x2 and g(x) = sin x. Then h(x) = f (x) + g(x). Previously
we found that f 0(x) = 2 x and that g0(x) = cos x. We conclude that

h0(x) =
dh
dx

(x) = 2 x + cos x: �

Example 2.38. Di�erentiate

k(x) = 3 cos x:

We set f (x) = cos x and c = 3. Then k(x) = cf (x). We found previously
that f 0(x) = � sinx. We conclude that

k0(x) =
dk
dx

(x) = � 3 sinx: �
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Example 2.39. Di�erentiate log a x, the logarithm functions for an arbi-
trary positive base a, a 6= 1.

We use the formula for loga x from (1.23), loga x = ln x
ln a . In this sense

loga x = cf (x) where c = 1=ln a and f (x) = ln x. We stated previously
that ln 0x = 1=x (see Theorem 2.13 on page 52). Using the linearity of the
derivative, we �nd

log0
a x =

d
dx

�
ln x
ln a

�
=

1
ln a

ln0x =
1

ln a
�

1
x

=
1

x ln a
:

Speci�cally we �nd

log0
3 x =

1
x ln 3

and log0
1=3 x =

1
x ln(1=3)

= �
1

x ln 3
:

We may even be more speci�c, and see at what rate the logarithm func-
tions are increasing at a speci�c point.

log0
5 2 =

1
2 ln 5

= 0 :310667:

The numerical value is obtained from a calculator, and exact up to 6 decimal
places. The equation says that log5 x is increasing at a rate of approximately
0:310667 whenx = 2. �

Exercise 63. Find the derivatives of the following functions:

(1) f (x) = 5 + 7 sin x (2) g(x) = 3 log 2(x) (3) h(x) = 3 sin x � 5 cosx:

Supposef and g are de�ned and di�erentiable on an interval, or a union
of intervals. Thinking of f and g more as functions, and not so much as
functions evaluated at a point, we may omit (x) from the notation. Then
the di�erentiation rules are

(f + g)0 = f 0+ g0 or
d

dx
(f + g) =

df
dx

+
dg
dx

(2.39)

and

(cf )0 = cf 0 or
d

dx
(cf ) = c

df
dx

:(2.40)
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2.11.2 Product and Quotient Rules

Next we state the product and the quotient rule. They allow us to calculate
the derivatives of products and quotients of functions. Again, let f and g
be functions, and assume that both of them are di�erentiable at x. For the
quotient rule assume in addition that g(x) 6= 0. Then the product fg and
the quotient f=g are di�erentiable at x and their derivatives are given by

(fg )0(x) = f 0(x)g(x) + f (x)g0(x)(2.41)

�
f
g

� 0

(x) =
f 0(x)g(x) � f (x)g0(x)

[g(x)]2 :(2.42)

In Leibnitz' notation these formulas become

d
dx

(fg )(x) =
df
dx

(x)g(x) + f (x)
dg
dx

(x)(2.43)

d
dx

�
f
g

�
(x) =

df
dx (x)g(x) � f (x) dg

dx (x)
[g(x)]2 :(2.44)

Example 2.40. Di�erentiate the function

h(x) = x2 sinx:

Write h(x) = f (x)g(x) with f (x) = x2 and g(x) = sin x. In Section 2.3
we worked out that f 0(x) = 2 x and that g0(x) = cos x (see Table 2.2).
Putting this into the product formula yields

h0(x) = f 0(x)g(x) + f (x)g0(x) = 2 x sinx + x2 cosx: �

Exercise 64. Find the derivatives of the following functions:

(1) f (x) = x cosx (2) g(x) = x2ex (3) h(x) = x ln x (4) k(x) = x
p

2x + 3 :

Example 2.41. Di�erentiate the function

k(x) = 1 =x:

The function is de�ned for all non-zero real numbers. To di�erentiate k(x)
we set k(x) = f (x)=g(x) with f (x) = 1 and g(x) = x. Then f 0(x) = 0 and
g0(x) = 1, and we �nd that

k0(x) =
f 0(x)g(x) � f (x)g0(x)

[g(x)]2 =
� 1
x2 : �
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Example 2.42. Show:

If f (x) = xn , then f 0(x) = nxn� 1 for n = 0, 1, 2, 3, 4, 5, etc(2.45)

Solution: We learned already the �rst three cases.

� If n = 0, then f (x) = 1 (by de�nition) and f 0(x) = 0.

� If n = 1, then f (x) = x and f 0(x) = 1.

� If n = 2, then f (x) = x2 and f 0(x) = 2 x.

Supposef (x) = x3. To calculate f 0(x), we set f (x) = g(x)h(x) with
g(x) = x2 and h(x) = x. Previously we found that g0(x) = 2 x and h0(x) = 1.
According to the product rule we �nd that f 0(x) = g0(x)h(x) + g(x)h0(x) =
2xx + x2 = 3x2. This means:

� If n = 3, then f (x) = x3 and f 0(x) = 3 x2.

Let's push our calculations one n further. Suppose f (x) = x4. We
set f (x) = g(x)h(x) with g(x) = x3 and h(x) = x. Using the previous
calculation we �nd f 0(x) = g0(x)h(x) + g(x)h0(x) = 3 x2x + x3 = 4x3.

� If n = 4, then f (x) = x4 and f 0(x) = 4 x3.

Exercise 65. Show:

� If f (x) = x5, then f 0(x) = 5 x4.

� If f (x) = x6, then f 0(x) = 6 x5.

Proceeding with larger and larger values forn, and in each step using
previous results (formally speaking we are doing an induction), we �nd the
general result claimed in (2.45). �

Example 2.43. Find the derivative of an arbitrary polynomial.
Solution: A polynomial is a �nite sum of multiples of non-negative

powers of the variable, i.e., a function of the form

f (x) = anxn + an� 1xn� 1 + � � � + a1x + a0;

where the ai are constants. Using Example 2.42 and the linearity of the
derivative we see right away that

f 0(x) = nanxn� 1 + ( n � 1)an� 1xn� 2 + � � � + a1:

Here is a speci�c example, a special case of the formula which we just
derived.

If f (x) = 4 x5 � 3x2 + 4x + 5, then f 0(x) = 20x4 � 6x + 4 : �
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Exercise 66. Find the derivatives of the following functions:

(1) f (x) = 4 x7 � 3x5 + x2 � 1 (2) g(x) = 8 x5 � 7x3 + 2x + 1 :

Example 2.44. Find the derivative of an arbitrary rational function.
Solution: Rational functions are functions of the form

r (x) =
p(x)
q(x)

;

where p(x) and q(x) are polynomials. We assume, as it is typically done,
that p(x) and q(x) do not have any common zeros15. The quotient rule tells
us now that

r 0(x) =
p0(x)q(x) � p(x)q0(x)

[q(x)]2 :

Each of the terms in this formula is known due to Example 2.43. The
function r (x) is de�ned for all x where q(x) 6= 0, and the expression for
r 0(x) is valid for the same values ofx.

To be speci�c, if r (x) = ( x2 � 5)=(x3 + 1), then

r 0(x) =
2x(x3 + 1) � (x2 � 5)3x2

(x3 + 1) 2 =
� x4 + 15x2 + 2x

(x3 + 1) 2 : �

Exercise 67. Find the derivatives of the following functions:

(1) f (x) =
3x + 1
x2 + 1

(2) g(x) =
x2 + 2x + 4

3x � 7
(3) h(x) =

x3 � x + 1
16x2 � 7x + 4

:

Example 2.45. Find the derivative of

f (x) = tan x:

Solution: We express f (x) as a quotient of two functions, f (x) =
sinx= cosx, and apply the quotient rule. Use also that sin0x = cos x (see

15 This assumption can be forced in the following sense. Supposex = a is a common
zero of p(x) and q(x). Then p(x) = p1(x)( x � a) and q(x) = q1(x)( x � a), where p1(x) and
q1(x) are once more polynomials. Instead of our initial expression r (x) = p(x)=q(x), we
may cancel the common factor (x � a) and replace the expression forr (x) by p1(x)=q1(x).
We repeat this process of cancelling common factors until the numerator and denominator
of the fraction describing r (x) have no common zero anymore.
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Example 2.11 on page 50) and cos0x = � sinx (see Exercise 37 on page 51),
and the identity cos2 x + sin 2 x = 1 (see (5.18)). We �nd

tan0x =
sin0x cosx � sinx cos0x

cos2 x
=

cos2 x + sin 2 x
cos2 x

=
1

cos2 x
= sec2 x:

(2.46)

Some books and computer programs will give this result in a di�erent form.
Based on the relevant trigonometric identity, they write

tan0x = 1 + tan 2 x:(2.47)

That draws our attention to the fact that the function f (x) = tan x satis�es
the di�erential equation

f 0(x) = 1 + f 2(x): �

Example 2.46. Di�erentiate the function

f (x) = sec x:

Solution: We write the function as a quotient: f (x) = 1 =cosx. The
function is de�ned for all x for which cosx 6= 0, i.e., for x not of the form
n� + 1=2, where n is an integer. We apply the quotient rule, using that
cos0x = � sinx (see Exercise 37 on page 51), and that the derivative of a
constant vanishes. We �nd

sec0x =
sinx
cos2 x

=
sinx
cosx

�
1

cosx
= tan x secx: �(2.48)

Exercise 68. Find the derivatives of the following functions:

(1) f (x) = x2 tan x (2) g(x) = cot x (3) h(x) =
tan x
x2 + 4

(4) k(x) = x cscx:

Supposef and g are de�ned and di�erentiable on an interval, or a union
of intervals. Thinking of f and g again more as functions, and not so much
as functions evaluated at a point, we may once more omit (x) from the
notation. Then the product rule and quotient rule become

(fg )0 = f 0g + fg 0 or
d

dx
(fg ) =

df
dx

g + f
dg
dx

(2.49)

and, whereverg(x) 6= 0,
�

f
g

� 0

=
f 0g � fg 0

g2 or
d

dx

�
f
g

�
=

df
dx g � f dg

dx

g2 :(2.50)

Here g2 is the square of the functiong, given by g2(x) = [ g(x)]2.
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2.11.3 Chain Rule

The chain rule tells us how to calculate the derivative of a composition of
functions. E.g., the function

h(x) =
p

1 + 2 cosx

may be written as a composition of two functions. In a �rst step, we map x
to 1 + 2 cosx and then we take the radical of the result. Let us denote the
�rst function by g (g(x) = 1+2 cos x) and the second one byf (f (u) =

p
u).

So we are composing the functionsf and g. The mathematical notation for
the composition of functions, applied in this situation, is f � g. In this sense
we have

h(x) = ( f � g)(x) = f (g(x)) :

For this construction to make sense, we must make sure thatf (u) is
de�ned whenever u = g(x) for somex in the domain of g. In our case,f (u)
is de�ned only for non-negative numbersu, so we are allowed to take only
numbers x so that 1 + 2 cosx is non-negative. We need that cosx � � 1=2.
This is the case ifx 2 [� 2�= 3; 2�= 3]16. Using more mathematical terms, we
need that the domain of f (the set of points to which f is applied) contains
the range of g (the set in which g takes values). If this example was not
enough to refresh your memory about compositions of functions, then you
are encouraged to read more on this topic in Section 5.7.

The instruction (rule) for the derivative of a composition is now as fol-
lows. Let f and g be functions, and suppose that the domain off contains
the range ofg, so that f (g(x)) is de�ned for all x in the domain of g. We use
the name h for this composite function, so h(x) = f (g(x)). The chain rule
says that wheneverg is di�erentiable at x and f is di�erentiable at g(x),
then

h0(x) = ( f � g)0(x) = f 0(g(x))g0(x):(2.51)

Here we used once more the notation� for the composition of functions. In
Leibnitz' notation the chain rule says that

dh
dx

(x) =
d

dx
f (g(x)) =

df
du

(g(x))
dg
dx

(x):(2.52)

16 We can shift the interval by integer multiples of 2 � and get more intervals on which
1 + 2 cosx is non-negative.
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Example 2.47. Di�erentiate the function

h(x) = ex2+1 :

Solution: We write h as a composition of two functions. Setg(x) =
x2 +1 and f (u) = eu. Then h is the composition off and g, h(x) = f (g(x)).
Remember that f 0(u) = f (u) = eu and g0(x) = 2 x. In particular, f 0(g(x)) =
ex2+1 . The chain rule tells us that

h0(x) = f 0(g(x))g0(x) = 2 xex2+1 :

In the last expression we reversed the order of the factors to make the
expression more readable. �

Example 2.48. Show that g(x) =
p

bx + c is di�erentiable at all x for
which bx + c > 0, and that the derivative is

g0(x) =
b

2
p

bx + c
:

Remark 6. This exercise carries out the generalization of the special case
where f (x) =

p
x, promised in the proof of Proposition 2.15. It also repeats

Exercise 41 using general principles instead of brute force.

Solution: Expressg(x) as a composition: g(x) = f (h(x)) where h(x) =
bx + c and f (u) =

p
u. Note that h(x) is di�erentiable everywhere, and

that f (u) is di�erentiable for u > 0, as actually shown in the proof of
Proposition 2.15. Sog(x) is di�erentiable at all x for which bx + c > 0. In
the proof of Proposition 2.15 we did show that f 0(u) = 1 =(2

p
u). We also

know that h0(x) = b. According to the chain rule we get

g0(x) = f 0(g(x))h0(x) =
b

2
p

bx + c
: �

Exercise 69. Find the derivatives of the following functions:

(1) f (x) = e4x� 5 (2) g(x) = ecosx (3) h(x) =
p

3x2 � 5:

Let us generalize Example 2.42, and not only di�erentiate the power of
a variable, but also the power of a function.

Example 2.49. Combining Example 2.42 with the chain rule we �nd

d
dx

un(x) = nu0(x)un� 1(x)
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for all natural numbers n, without any restriction on u, except for the as-
sumption that u is di�erentiable at x.

Here we decompose the functionun(x) as a composition of two functions,
�rst mapping x to u = u(x) and then mapping u to its nth power un(x). To
compare our situation with the chain rule as stated, we setg(x) = u(x) and
f (u) = un. Then

h(x) = f (g(x)) = un(x):

In Example 2.42 we learned how to di�erentiate nth powers. In particular,
f 0(u) = nun� 1. According to the chain rule:

h0(x) = f 0(g(x))g0(x) = n(g(x))n� 1g0(x) = nu0(x)un� 1(x):

We reordered the expressions so that the expression is more readable.
To be speci�c, here are two concrete examples:

d
dx

(x2 + 1) 25 = 25(x2 + 1) 24 � 2x = 50x(x2 + 1) 24

and

d
dx

tan3 x = 3 sec2 x tan2 x: �

For practice, let us do a few more examples of this kind.

Example 2.50. Di�erentiate

y(x) = (3 x + 2) 6:

In a brute force approach we could multiply (3x + 2) 6 out and then use the
formula for the derivative of a polynomial to give the answer. Here is a more
elegant approach. Write y(x) as a composition of functions. First we map
x to 3x + 2, and then take the 6th power of the result. So we write y(x) as
f (g(x)) with g(x) = 3 x + 2 and f (u) = u6. Then g0(x) = 3 and f 0(u) = 6 u5.
Using the chain rule we conclude

y0(x) = f 0(g(x))g0(x) = 6(3 x + 2) 53 = 18(3x + 2) 5: �

Example 2.51. Di�erentiate the function

f (x) = cos2 x:

We may di�erentiate f by writing it as a composition of functions. First
map x to cosx, and then take the square of the result, sof (x) = g(h(x))
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with h(x) = cos x and g(u) = u2. We found previously that h0(x) = � sinx
and that g0(u) = 2 u. This yields

f 0(x) = g0(h(x))h0(x) = � 2 cosx sinx:

We could also have di�erentiated the function using the product rule,
f (x) = cos x cosx. Certainly we come up with the same answer for the
derivative, and you are invited to verify this. �

Exercise 70. Find the derivatives of the following functions:

(1) f (x) = (3 x2 � 1)16 (2) g(x) = sin 7 x (3) h(x) = sec3 x:

Example 2.52. Di�erentiate the function

f (x) = etan x :

We write f (x) as g(h(x)) with h(x) = tan x and g(u) = eu. We found the
derivatives of h and g before. In particular, h0(x) = sec2 x and g0(u) =
g(u) = eu. Then g0(h(x)) = etan x , and we may conclude that

d
dx

etan x = f 0(x) = g0(h(x))g0(x) = etan x sec2 x: �

Generalizing two of the examples from above, we �nd a more general
formula.

Example 2.53. Let u(x) be a di�erentiable function.

If f (x) = eu(x) then f 0(x) = u0(x)eu(x) :

E.g.,

If f (x) = esin x then f 0(x) = cos xesin x : �

Exercise 71. Find the derivatives of the following functions:

(1) f (x) = esecx (2) g(x) = ecot x (3) h(x) = e3x2� 5x+1 :

Example 2.54. Di�erentiate the function ln juj for u 6= 0.
Solution: In Theorem 2.13 on page 52 we stated that ln0u = 1=u

for positive values of u. So, suppose thatu < 0. Then u = �j uj and
ln juj = ln( � u). The chain rule tells us that, for u < 0,

d
du

ln juj =
1

juj
d

du
(� u) = ( � 1)

1
� u

=
1
u

:

This means that for all non-zero u
d

du
ln juj =

1
u

: �
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In this example we intentionally denoted the variable by u (instead of
our more common namex), so that the next example is an immediate con-
sequence of the previous one, using once more the chain rule.

Example 2.55. Let u by a function which is di�erentiable and nowhere
zero on its domain. Then

d
dx

ln ju(x)j =
u0(x)
u(x)

:

To be more speci�c:

d
dx

ln jx2 � 4j =
2x

x2 � 4

for all x 6= � 2. �

Let us apply the formula in the last example. We provide two di�eren-
tiation formulas. The �rst one is more general, the second one may be a bit
easier to comprehend. Before we give the examples, it is important to note:

Remark 7. In the following formulas we make use of the derivative of the
exponential function and the logarithm function in an essential way. So far,
we have not veri�ed them, and we will have to do this later on. To avoid a
circular argument, we have to make sure that we do not rely on the mate-
rial in the remaining part of this section when we prove the di�erentiation
formulas for these two function.

Example 2.56. Consider a function u which is di�erentiable and nowhere
zero on its domain.

If f (x) = ju(x)jq then f 0(x) = q
u0(x)
u(x)

ju(x)jq:(2.53)

Here q can be any real number.
To see this we �rst rewrite the function f in a di�erent form using the

exponential function and its inverse, the natural logarithm.

f (x) = eln f (x) = eln( ju(x)jq) = eq ln ju(x)j :

Using Examples 2.53 and 2.55 we �nd

f 0(x) =
�

d
dx

(qln ju(x)j)
�

eq ln ju(x)j = q
u0(x)
u(x)

ju(x)jq:
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More concretely, let

f (x) = jxj3:

As domain for this function we use the set of all non-zero real numbers, i.e.,
(�1 ; 0) [ (0; 1 ). We set u(x) = x and q = 3. Then u0(x) = 1 and

f 0(x) = 3
jxj3

x
= 3

x2jxj
x

= 3xjxj:

Actually, the expression for f (x) makes also sense forx = 0, and we may
include this point in the domain. So we set f (0) = 0 and we still have
f (x) = jxj3, but now for all real numbers. Then, based on the de�nition, we
can calculate that f 0(0) = 0, and we obtain for all real numbers that:

If f (x) = jxj3 then f 0(x) = 3 xjxj:

Here is another concrete example:

d
dx

�
�
�
�
1
2

� sinx
�
�
�
�

5

= 5
� cosx

1
2 � sinx

�
�
�
�
1
2

� sinx
�
�
�
�

5

whenever sinx 6= 1=2. Speci�cally, we have to exclude all x of the form
�
6 + 2n� and 5�

6 + 2n� , where n is an arbitrary integer. �

Exercise 72. Find the derivatives of the following functions:

(1) f (x) = ln j3x2 � 5j (2) g(x) = j sinx � 3j5 (3) h(x) = jx2 � 4x � 1j3:

In each case, determine for which values ofx the formula for the derivative
holds.

Example 2.57. Consider a function u which is di�erentiable and every-
where positive on its domain, and letf be its qth power. So,

f (x) = uq(x):

Here q can be any real number. Then

f 0(x) = qu0(x)uq� 1(x):

The calculation is the same as the one we used to show (2.53). We can omit
absolute value signs everywhere, and that allows us to cancel a power of
u(x) in the formula.
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To be more concrete, let us di�erentiate x1=3. As domain for this function
we use (0; 1 ). Applied in this special case the formula says that

d
dx

�
x

1
3

�
=

1
3

x
1
3 � 1 =

1
3

x� 2
3 :

More generally, supposex > 0 and q is any real number, then:

d
dx

(xq) = qxq� 1: �

Example 2.58. Di�erentiate

h(x) = (sin x)1=2 for x 2 (0; � ):

First, observe that sin x is positive on the interval, so we may apply the
formula in Example 2.57:

f 0(x) =
1
2

cosx(sin x)� 1=2 =
cosx

2
p

sinx
: �

Exercise 73. Find the derivatives of the following functions:

(1) f (x) = (1 + 3 x2)3=2 (2) g(x) = (sin 2 x + 5) 7=3 (3) h(x) = (sec2 x + 5) � :

Example 2.59. We had exponential functions not only for the basee, but
for any basea, where a > 0 and a 6= 1. Let us di�erentiate

f (x) = ax :

Solution: According to the de�nition, f (x) = ex ln a. Using the chain
rule we �nd

d
dx

ax = (ln a)ex ln a = ax ln a:

To be absolutely concrete:

d
dx

2x = 2 x ln 2

and

d
dx

�
1
2

� x

=
�

1
2

� x

ln(1=2) = � (ln 2)
�

1
2

� x

: �
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Example 2.60. For x > 0, di�erentiate the function

f (x) = xx :

Solution: This is not much harder than the problem in the previous
example. We �rst write the function slightly di�erently,

f (x) = ex ln x :

Then we use the formula in Example 2.53 on page 94. We setu(x) = x ln x,
and di�erentiate this function using the product rule.

u0(x) = ln x + x ln0x = ln x + x
1
x

= 1 + ln x:

Then

d
dx

xx = u0(x)eu(x) = (1 + ln x)xx : �

Exercise 74. Find the derivatives of the following functions, and specify
where your formula holds:

(1) f (x) = 5 x (2) g(x) = xsin x (3) h(x) = 3 cosx :

Example 2.61. As an introductory example to the de�nition of the deriva-
tive (see Example 2) we discussed the derivative of the function

f (x) =
p

1 � x2:

We consider this function on the open interval (� 1; 1). We di�erentiate
the function using the chain rule, and for this purpose we decomposef as
a composition of two functions. First we map x to u(x) = 1 � x2, and
then we map u to h(u) =

p
u. We learned that u0(x) = � 2x, and that

h0(u) = 1 =(2
p

u). This means that

f 0(x) =
� x

p
1 � x2

:

With this we have not only veri�ed that the function is di�erentiable on
the interval ( � 1; 1), but with our calculation we have also con�rmed that
the slope of the tangent line to the circle is as we predicted it in Example 2
based on geometric arguments. �
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Example 2.62. It may happen to us that a function is naturally written
as a composition of more than two functions, say

F (x) = e
p

x2+1 :

Here we mapx to u = x2 + 1 by a function which we call h, then we map u
to v =

p
u and call this function g, and �nally we send v to ev and call this

function f . So F is the composition of the functions f , g, and h, or

F (x) = f (g(h(x))) :

We can gather g and h into one function G, so G(x) =
p

x2 + 1. Then
we apply the chain rule twice, once to di�erentiate G = g � h, and once to
di�erentiate F = f � G. We �nd:

F 0(x) = f 0(G(x))G0(x) and G0(x) = g0(h(x))h0(x):

This can be combined as

F 0(x) = f 0(g(h(x))) g0(h(x))h0(x):

Let us return to the speci�c example. Obviously h0(x) = 2 x and g0(u) =
1

2
p

u . We also learned that f 0(v) = f (v). Putting all of this together, can-
celling a factor 2, and writing the expressions in an order which makes it
easy to read, we �nd

F 0(x) =
x

p
x2 + 1

e
p

x2+1 : �

In the previous example we demonstrated how to calculate the derivative
of a composition of three functions. The process did not depend on the
speci�c example, and we may state our result in more generality. LetF be
a function of three di�erentiable functions, which we call f , g, and h. So

F (x) = f (g(h(x))) :

Then

F 0(x) = f 0(g(h(x))) g0(h(x))h0(x):(2.54)

If we like to write this formula using Leibnitz' notation, then we need to
give names to the variables of the functions. Denote the variable off by v
and the one ofg by u. The variable of h was calledx. Then the chain rule
for a composition of three functions is

dF
dx

(x) =
df
dv

(g(h(x)))
dg
du

(h(x))
dh
dx

(x):(2.55)
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Exercise 75. Find the derivatives of the following functions:

(1) f (x) = esin(x2+1)

(2) g(x) = (sin 3(x2 + 7) + 5) 4=11

(3) h(x) = tan 3(5x2 � 3x + 5)

(4) k(x) = (csc4(cos2 x + 3) + 3 x)5=7:

Example 2.63. Di�erentiate the function

F (x) = tan(cos(
p

x4 + 2x + 5)) :

You may convince yourself thatx4+2x+5 > 0 for all real numbersx, so that
the radical is de�ned for all x as well. (Use any means which come to your
mind, if necessary depend on technology to graph the function.) Because
j cosuj � 1 and tanv is de�ned if jvj � 1, we �nd that F (x) is de�ned for
all x 2 (�1 ; 1 ). You �nd the graph of F (x) for x 2 [� 3; 3] in Figure 2.20.
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Figure 2.20: The function F (x) =
tan(cos(

p
x4 + 2x + 5))
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Figure 2.21: The derivative of
F (x) = tan(cos(

p
x4 + 2x + 5))

To di�erentiate the function F we break it up into a composition of
three functions, writing F (x) = f (g(h(x))), where h(x) =

p
x4 + 2x + 5,

g(u) = cos u, and f (v) = tan v. You learned previously that g0(u) = � sinu
and f 0(v) = sec2 v. Using the chain rule you also �nd that

h0(x) =
4x3 + 2

2
p

x4 + 2x + 5
=

2x3 + 1
p

x4 + 2x + 5
:
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Now we apply the chain rule and �nd

F 0(x) = f 0(g(h(x))) g0(h(x))h0(x)

= � sec2
�

cos(
p

x4 + 2x + 5)
�

sin
� p

x4 + 2x + 5
� 2x3 + 1

p
x4 + 2x + 5

:

We graphed this function in Figure 2.21. �

Apparently, we could go on and on making more di�cult examples. This
is not our goal. You need to understand the basic tools used to compute
derivatives, and that is what you were supposed to practice with the help
of the examples in this section.

2.11.4 Derivatives of Inverse Functions

Intuitively, it should be clear what happens when we di�erentiate the inverse
of a function17. To obtain the graph of the inverse of a function, we take
the graph of the function and reect it at the diagonal. The same applies
to the tangent line to the graph of a function. This allows us to determine
the derivative of the inverse function. Let us look at an example �rst. After
having discussed the example we will determine in general where the inverse
of a di�erentiable function is di�erentiable and what the derivative is.

Example 2.64. The functions f (x) = x3 and g(x) = x1=3 are inverses of
each other. To see this we check thatf (g(x)) = [ x1=3]3 = x and g(f (x)) = x
for all real numbers x. We restrict ourselves to the domain (0; 1) for both
functions, f and g. We also use (0; 1) also as range for both of them. They
are still inverses of each other because the domain off is the range ofg and
vice versa. You are invited to verify this. You may rely on the graphs of
the functions which are shown in Figures 2.22 and 2.23. You should observe
that one �gure is the reection of the other one at the diagonal.

Let us take some point x 2 (0; 1). We found earlier that f 0(x) = 3 x2.
Let us also take a point y 2 (0; 1), then g0(y) = 1

3y� 2
3 . We used di�erent

names for the variables off and g so that we can distinguish them. For
y = f (x) we �nd that

g0(f (x)) =
1
3

�
x3� � 2

3 =
1
3

x� 2 =
1

3x2

17 You may want to review the concept of the inverse of a function, and you can do so
by reading Section 5.6.
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Figure 2.22: f (x) = x3
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Figure 2.23: g(x) = x1=3

so that

g0(f (x)) =
1

f 0(x)
:(2.56)

Let us give a numerical example. Sayx = 1=2 and f (x) = y = 1=8. Then

f 0(x) =
3
4

and g0(y) =
1
3

�
1
8

� � 2
3

=
4
3

:

You see that g0(f (x)) = 1 =f 0(x). In the �gures you also see the tangent line
l1 to f (x) at the point (1 =2; 1=8) and the tangent line l2 to g(y) at the point
(1=8; 1=2). The equations of the tangent lines are

l1(x) = f 0
�

1
2

� �
x �

1
2

�
+

1
8

and l2(y) = g0
�

1
8

� �
y �

1
8

�
+

1
2

:

After putting in the values for f 0(1=2) and g0(1=8) we have

l1(x) =
3
4

�
x �

1
2

�
+

1
8

=
3
4

x �
1
4

and l2(y) =
4
3

�
y �

1
8

�
+

1
2

=
4
3

y +
1
3

:

Let us think geometrically for a moment. The tangent line to the graph
at a point is a line which is close to the graph near that point. This property
stays unchanged when we reect the graph of the function and the tangent
line at the diagonal of the coordinate system, in other words, if we invert
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the function. A line with slope m, reected at the diagonal, will turn into a
line with slope 1=m, and this is exactly what is expressed in (2.56). You are
now invited to also verify that, as we should expect, l1 and l2 are inverses
of each other. In other words,

l2(l1(x)) = x and l1(l2(y)) = y: �

Exercise 76. The inverse of sinx is called arcsiny.

1. Find the equation of the tangent line to the graph of f (x) = sin x at
the point ( �= 6; 1=2).

2. Use geometric reasoning as in Example 2.64 to �nd the tangent line
to the graph of arcsiny at the point (1 =2; �= 6).

The following theorem is the key tool for the upcoming discussion. We
will also apply it in our discussion of Newton's method.

Theorem 2.65. [Intermediate Value Theorem ] Let f be a di�erentiable
(or continuous18) function and suppose that its domain contains the closed
interval [a; b]. Let C be any number betweenf (a) and f (b). Then there
exists a numberc, where a � c � b, such that f (c) = C.

This important result is typically discussed in a real analysis course. It
is a consequence of the completeness of the real numbers.

It will be convenient to have a characterization of intervals. A subset
J of the real line is an interval if, whenever a, b 2 J and a � c � b, then
c 2 J . The following two corollaries are consequences of the Intermediate
Value Theorem.

Corollary 2.66. Let f be a di�erentiable (or continuous) function and I
an interval which in contained in the domain on f . Then the image ofI is
an interval.19

Corollary 2.67. Let f be a di�erentiable (or continuous) invertible func-
tion which is de�ned on an interval I . Then f is either increasing or f is
decreasing.

Using these two corollaries one can deduce:
18 We did not, and not not wish to, de�ne continuous functions. Every di�erentiable

function is continuous, but not every continuous function is di�erentiable.
19 In general, the image of an open interval need not be open. E.g., as you will learn

later to work out, the function f (x) = x(x � 1)(x + 1) maps the open interval ( � 1; 1) to
the closed interval [� 2

p
3=9; 2

p
3=9].
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Theorem 2.68. Let f be a di�erentiable and invertible function which is
de�ned on an open interval (a; b). Then the image off is an open interval
(A; B ).

In this theorem a is allowed to be�1 and b to be 1 . It can happen that
A is �1 and that B is 1 . You are invited to check the following examples.

Exercise 77. Verify the following:

1. If f (x) = x2 and the domain is (0; 1 ), then the image is (0; 1 ).

2. If f (x) = 1 =x and the domain is (0; 1 ), then the image is (0; 1 ).

3. If f (x) = sin x and the domain is (� �
2 ; �

2 ), then the image is (� 1; 1).

4. If f (x) = cos x and the domain is (0; � ), then the image is (� 1; 1).

5. If f (x) = ex and the domain is (�1 ; 1 ), then the image is (0; 1 ).

6. If f (x) = ln x and the domain is (0; 1 ), then the image is (�1 ; 1 ).

7. If f (x) = tan x and the domain is (� �
2 ; �

2 ), then the image is (�1 ; 1 ).
You see a graph of the function in Figure 2.24.

8. If f (x) = arctan x (the inverse of the tangent function) and the domain
is (�1 ; 1 ), then the image is typically20 taken as (� �

2 ; �
2 ). You see a

graph of the function in Figure 2.25.

Let f be as in Theorem 2.68. Then the inverse off is a function g which
is de�ned on an open interval (A; B ). The concept of di�erentiability was
de�ned on (unions of) open intervals, so that we may ask whether, or where,
g is di�erentiable. The answer is as follows.

Theorem 2.69. Let f be a di�erentiable and invertible function which is
de�ned on an open interval (a; b), and denote the image off by (A; B ).
Denote the inverse off by g. Then g is di�erentiable at all points y 2 (A; B )
for which f 0(g(y)) 6= 0 . For these values ofy and for x such that f (x) = y
the derivative is given by:

g0(y) =
1

f 0(g(y))
or g0(f (x)) =

1
f 0(x)

:

20 Other choices are possible.
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Figure 2.24: tanx on (� �= 2; �= 2)
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Figure 2.25: arctanx on (� 20; 20)

Proof. We will not show the di�erentiability of g. Assuming it, we verify
the formula for g0. By de�nition we have

f (g(y)) = y

for all y 2 (A; B ). Di�erentiate both functions, the left hand side and right
hand side of the equation. When di�erentiating the composition of f and g
we apply the chain rule. We �nd

f 0(g(y))g0(y) = 1 and g0(y) =
1

f 0(g(y))
;

as claimed. If y = f (x), then g(y) = g(f (x)) = x, and we obtain the second
version of the formula for the derivative of the inverse of the function:

g0(f (x)) =
1

f 0(x)
:

We apply the theorem to �nd some important derivatives.

Example 2.70. Show that the exponential function is di�erentiable and
that

d
dy

ey = ey:
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By de�nition, the exponential function is the inverse of the natural log-
arithm function ln. The natural logarithm function is di�erentiable and
ln0x = 1=x, see Theorem 2.13. Setf (x) = ln x and g(y) = ey in Theo-
rem 2.69. We note that ln0(x) 6= 0 for all x in (0; 1 ), the domain of the
natural logarithm. First of all, the theorem says that the exponential func-
tion is di�erentiable. Secondly, the theorem provides the formula for the
derivative. Speci�cally, we calculate that

d
dy

ey =
1

ln0(ey)
=

1
1=ey = ey;

as claimed. �

Remark 8. In the previous example we proved at least part of Theo-
rem 2.12, assuming Theorem 2.13. Combined with the chain rule, we �nd
that the function f (x) = eax is di�erentiable, and that f 0(x) = aeax . It will
take a little longer before we can prove Theorem 2.13.

Example 2.71. Show that the function g(y) = arctan y (the inverse of
f (x) = tan x) is di�erentiable, and that

d
dy

arctan y =
1

1 + y2 :

As domain for tan x we use the interval (� �= 2; �= 2), and as its domain we
use (�1 ; 1 ). Accordingly, the domain for g(y) = arctan y is the interval
(�1 ; 1 ), and the range for this function is (� �= 2; �= 2). You see the graph
of the arctangent function in Figure 2.25 on the page before.

Solution: The function f (x) = tan x is di�erentiable on its entire
domain, and f 0(x) = sec2 x is nowhere zero. Theorem 2.69 tells us that
g(y) = arctan y is di�erentiable on the entire domain of this function, i.e.,
on the interval ( �1 ; 1 ). The theorem also provides us with the formula
for the derivative:

arctan0(y) =
1

tan0(arctan y)
=

1
sec2(arctan y)

= cos2(arctan y):

All we need to do now is to �gure out what cos2(arctan y) is. To do this
we draw a triangle in which we identify the available data. We refer to the
notation in Figure 2.26.

There you see a rectangular triangle, the right angle is at the vertex
B . The angle at the vertex A is called u. The adjacent side to this angle is
chosen to be of length 1, and the opposing side of lengthy. So, by de�nition,

tan u = y and arctany = u:
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y

1

u

A B

Figure 2.26: An informative triangle

By the theorem of Pythagoras, the length of the hypotenuse is
p

1 + y2.
Then

cosu =
1

p
1 + y2

and cos2(arctan y) =
1

1 + y2 :

The conclusion is that

arctan0(y) =
1

1 + y2 :(2.57)

This is exactly what we claimed.
Combined with the chain rule, we �nd a slightly more general formula.

Supposeu(x) is a di�erentiable function on some open interval (a; b). Then,
on this interval,

d
dx

arctan(u(x)) =
u0(x)

1 + u2(x)
:(2.58)

E.g.,

if f (x) = arctan( x2 + 5) ; then f 0(x) =
2x

1 + ( x2 + 5) 2 ;

and

if f (x) = arctan(sin x); then f 0(x) =
cosx

1 + sin2 x
: �
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Exercise 78. Find the derivatives of the following functions:

(1) f (x) = arctan(5 x � 2)

(2) g(x) = arctan(cos x)

(3) h(x) = arccot x

(4) i (x) = 1 =arctan x

(5) j (x) = arccot x2

(6) k(x) = arctan( ex )

In (3), arccot y denotes the arc-cotangent function, the inverse of the
function cot x. To solve the problem in (3), you may try to modify the
calculation of arctan0y. You may also �ll in the details in the following
argument. The trigonometric identities imply that cot x = � tan(x � �= 2).
Hence arccoty and � arctan y di�er by a constant. In particular, they have
the same derivative. Then

arccot0y = � arctan y:
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Figure 2.27: sinx on [� �= 2; �= 2]
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Figure 2.28: arcsiny on [� 1; 1]

Example 2.72. Discuss the arcsine function (arcsiny) and show that

arcsin0(y) =
1

p
1 � y2

:

By de�nition, the arcsine function is the inverse of the sine function.
Instead of the notation arcsin, you may also �nd the notation sin� 1 for this
function. In this case the superscript � 1 indicates that we take the inverse
of the function. You see the graphs of both functions in Figures 2.27 and
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2.28. For the purpose of the di�erentiability discussion, we use the interval
(� �= 2; �= 2) as domain of the function sinx and as range for the function
arcsiny. We use the interval (� 1; 1) as range domain of the function sinx
and as domain for the function arcsiny.21

Solution: The cosine function, the derivative of the sine function, is
nonzero on the interval (� �= 2; �= 2), and we may conclude from Theo-
rem 2.69 that arcsin is di�erentiable on ( � 1; 1). The theorem also tells
us what the derivative is:

arcsin0(y) =
1

sin0(arcsin(y))
=

1
cos(arcsin(y))

:

This expression does not give an easy expression for arcsin0(y), and we can
improve on it, using the information in a triangle similar to the one used in
the previous example. We use the triangle shown in Figure 2.29.

y

1

u

A B

Figure 2.29: An informative triangle

According to our choices, sinu = y and u = arcsin y. This means that
the adjacent side to the angleu is cosu = cos(arcsiny). The theorem of
Pythagoras tells us that cosu =

p
1 � y2, and this means that

arcsin0(y) =
1

p
1 � y2

:(2.59)

21 For the purpose of de�nition, we could have included the end points of the intervals,
but at y = � 1 arcsiny is not di�erentiable because sin 0(x) = 0 when x = � �= 2.
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In Leibniz' notation, and using sin� 1 to denote the inverse function of sin,
we get

d
dx

sin� 1(x) =
1

p
1 � x2

:

We may once more improve on this formula. Letu(x) be a di�erentiable
function which is de�ned on an open interval, and suppose thatju(x)j < 1.
Then, using the chain rule, we �nd that

d
dx

arcsin(u(x)) =
u0(x)

p
1 � u2(x)

:(2.60)

E.g., for x 2 (� 1=3; 1=3) we have

d
dx

arcsin(3x) =
3

p
1 � 9x2

;

and for x 2 (� 1; 1) we have

d
dx

arcsin(x2) =
2x

p
1 � x4

: �

Exercise 79. Find maximal open intervals on which the following functions
are de�ned and �nd their derivatives:

(1) f (x) = arcsin( x2 � 2) (2) g(x) = arcsin(tan x) (3) h(y) = arccos y:

Here arccosy denotes the arccosine function, the inverse of cosx. We con-
sider it as a function with domain (� 1; 1) and image (0; � ). To solve the
problem in (3), you may try to modify the calculation of arcsin 0. You may
also �ll in the details in the following argument. We know that sin x =
� cos(x + �= 2). Hence arcsiny and � arccosy di�er by a constant. In par-
ticular, they have the same derivative. Then

arcsin0y = � arccosy:

Remark 9. The formula for the derivatives of arcsiny and arccosy depends
on which range or image we choose for the function. E.g., if we consider
arcsiny as a function with domain (� 1; 1) and image (�= 2; 3�= 2), the

arcsin0(y) =
� 1

p
1 � y2

:
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2.12 Implicit Di�erentiation

Until now we considered functions which were given explicitly. I.e., we were
given an equationy = f (x), where f (x) is some instruction which assigns a
value to x. The points on the graph of f are the points which satisfy the
equation. Consider the equation

(x2 + y2)2 = x2 � y2:(2.61)

The solutions of this equation form a curve in the plane called a lemniscate,
see Figure 2.30. Parts of this curve look like the graph of a function, such
as the points for which y � 0. Without solving the equation for y, we still
like to calculate the slope of curve at one of its points. This process is called
implicit di�erentiation .

-1 -0.5 0.5 1

-0.3
-0.2
-0.1

0.1
0.2
0.3

Figure 2.30: Lemniscate

Let us consider an easy situation which we have studied before.

Example 2.73. Find the slope of the tangent line to the unit circle (the
curve consisting of all points which satisfy the equationx2 + y2 = 1) at the
point (1=2;

p
3=2).



112 CHAPTER 2. THE DERIVATIVE

Solution: We considery as a function of x, and in this sense we write
y = y(x)22, and di�erentiate both sides of the equation. Apparently, d

dx x2 =
2x. From the chain rule we deduce that d

dx y2 = 2y dy
dx . That means that the

derivative of the left hand side of the equation with respect tox is 2x +2y dy
dx .

The derivative of the right hand side is zero. The derivative of the left and
right hand side of the equation have to be the same, so that we get

2x + 2y
dy
dx

= 0 :

Solving the equation for dy
dx , we �nd

dy
dx

=
� x
y

:

Plugging in the coordinates of the speci�ed point, we �nd that

dy
dx

�
�
�
�
(1=2;

p
3=2)

=
� 1
p

3
:

As we had to specify the x and the y coordinate of the point, we use a
slightly di�erent way to indicate at which point we evaluate the derivative.
�

Example 2.74. Suppose you drop a circle of radius 1 into a parabola with
the equation y = 2x2. At which points will the circle touch the parabola?23

Solution: You see a picture of the problem in Figure 2.31. The crucial
observation in this example is, that the tangent line to the parabola and the
circle will be the same at the point of contact.

Suppose the coordinates of the center of the circle are (0; a), then its
equation is x2 + ( y � a)2 = 1. Di�erentiating the equation of the parabola
with respect to x, we �nd that dy

dx = 4x. Di�erentiating the equation of the
circle with respect to x, we get

2x + 2( y � a)
dy
dx

= 0 :

Assuming that dy
dx is the same for both curves at the point of contact, we

substitute dy
dx = 4x into the second equation, cancel a factor 2, factor out an

x, and �nd:

x(1 + 4( y � a)) = 0 :
22 We can do this only for part of the curve as y is not really a function of x. For most

x there are two values of y which satisfy the equation.
23 More sensibly, drop a ball of radius 1 into a cup whose vertical cross section is the

parabola y = 2 x2.
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Figure 2.31: Ball in a Cup.

The ball it too large to �t into the parabola and touch at (0 ; 0). So we may
assume that x 6= 0. Solving the equation 1 + 4(y � a) = 0 for y, we �nd
that the y coordinate of the point of contact is y = a � 1

4. We substitute
this expression into the equation of the circle and �nd that the x coordinate
of the point of contact is x = �

p
15
4 . Substituting this into the equation of

the parabola, we �nd that y = 15
8 at the point of contact. In summary, the

circle touches the parabola in the points

(x; y) =

 

�

p
15
4

;
15
8

!

: �

Example 2.75. Find the slope of the tangent line to the lemniscate

(x2 + y2)2 = x2 � y2;

and �nd the coordinates of the points where the tangent line is horizontal.
Solution: You see a picture of the lemniscate in Figure 2.30. As in

Example 2.73, we equate the derivatives of the left and right hand side of
the equation. We considery as a function of x. Using standard rules of
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di�erentiation, we �nd

2(x2 + y2)(2x + 2y
dy
dx

) = 2 x � 2y
dy
dx

:

Cancelling a factor 2 and multiplying out part of the left hand side of
the equation, we �nd

2x(x2 + y2) + 2 y(x2 + y2)
dy
dx

= x � y
dy
dx

:

Gathering all terms with a factor dy
dx on the left and those without on the

right, we �nd the equation

(2y(x2 + y2) + y)
dy
dx

= x(1 � 2(x2 + y2)) :

Finally we get an explicit expression for dy
dx in terms of x and y:

dy
dx

=
x(1 � 2(x2 + y2))
2y(x2 + y2) + y

=
x(1 � 2(x2 + y2))
y(2(x2 + y2) + 1)

:

Given any point (x; y) with y 6= 0 on the lemniscate, we can plug it into the
expression for dy

dx and we get the slope of the curve at this point.

E.g, the point ( x; y) = ( 1
2; 1

2

p
� 3 + 2

p
3) is a point on the lemniscate,

and at this point the slope of the tangent line is

dy
dx

=
2 �

p
2

p
3
p

� 3 + 2
p

3
:

This speci�c calculation takes a bit of arithmetic skill and e�ort to carry
out.

The tangent line is horizontal whenever dy
dx = 0. A quick look at Fig-

ure 2.30 tells us that we may ignore points wherex = 0 or y = 0. That
means that dy

dx = 0 whenever

1 � 2(x2 + y2) = 0 or x2 + y2 =
1
2

:

Substitute x2 + y2 = 1
2, and y2 = 1

2 � x2 into the equation of the curve.
Then we get an equation in one variable:

1
4

= x2 �
�

1
2

� x2
�

or x2 =
3
8

and y2 =
1
8

:

The points at which the tangent line to the lemniscate is horizontal are

(x; y) = ( �

p
6

4
; �

p
2

4
) � (� :6124; � :3536): �
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Exercise 80. Consider the curve given by the equationy2 = x3. Find the
slope of the curve at the point (x; y) = (4 ; 8).

Exercise 81. Consider the curve given by the equation

x3 + y3 = 1 + 3 xy2:

Find the slope of the curve at the point (x; y) = (2 ; � 1).

Exercise 82. Consider the curve given by the equationx2 = sin y. Find
the slope of the curve at the point with coordinatesx = 1= 4

p
2 and y = �= 4.

Exercise 83. As in Example 2.74, drop a circle into a parabola. Suppose
the equation of the parabola isy = cx2 for some positive constantc. Find
the radius of the largest ball that will touch the bottom in the parabola.

Exercise 84. Repeat Example 2.75 with the curve given by the equation
y2 � x2(1 � x2) = 0. You �nd a picture of this Lissajous �gure in Figure 5.7.

2.13 Related Rates

Many times you encounter situations in which you have two related variables,
you know at which rate one of them changes, and you like to know at which
rate the other one changes. In this section we treat such problems.

Example 2.76. Suppose the radius of a ball changes at a rate of 2 cm/min.
At which rate does its volume change whenr = 20?

Solution: Denote the volume of the ball by V and its radius by r . We
uset to denote the time variable. We considerV as a function of r as well
as t. The formula for the volume of a ball is V (r ) = 4�

3 r 3. According the
the chain rule:

dV
dt

=
dV
dr

dr
dt

= 4 �r 2 dr
dt

:

With r = 20 and dr
dt = 2 we get dV

dt = 3200� cm3=min. This is the rate at
which the volume of the ball changes with respect to time. �

Example 2.77. Suppose a particle moves on a circle of radius 10 cm. We
think of the circle as being in the Cartesian plane. The center of the circle
is at the origin (0; 0). As scale we use 1 cm on both, the horizontalx-axis
and the vertical y-axis. At some time the particle is at the point (5 ; 5

p
3)

and moves downwards at a rate of 3 cm=min. At which rate does it move
in the horizontal direction?
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Solution: The equation of the circle isx2 + y2 = 100. We consider both
variables, x and y, as functions of the time variablet. Implicit di�erentiation
of the equation of the circle gives us the equation

2x
dx
dt

+ 2y
dy
dt

= 0 :

In the given situation x = 5, y = 5
p

3, and dy
dt = � 3. We �nd that dx

dt = 3
p

3,
so that the particle is moving to the right at a rate of 3

p
3 cm=min. �

Example 2.78. Two ships, the Independence and Liberty, are on intersect-
ing courses. The Independence travels straight North at a speed of 22 knots
(nautical miles per hour), while the Liberty is traveling straight East at
a speed of 20 knots. Currently the Independence is 12 nautical miles away
from the intersection point of the courses, and the Liberty 15 nautical miles.
At which rate does the distance between the ships decrease?

Solution: Draw for yourself a picture of the situation. Use the Carte-
sian plan as background, and place the intersection point of the courses
of the ships at the origin. Use the standard convention that North is in
the direction of the positive y-axis and East in the direction of the positive
x-axis.

The position of both ships depends on time, which we denote byt and
measure in hours. The Liberty travels along thex-axis, and we denote its
position x(t). The Independence travels along they-axis, and we denote its
position by y(t). The distance between the ships, as a function of time, is

D (t) =
p

x2(t) + y2(t):

As the rate at which D(t) changes, we �nd

dD
dt

=
x(t) dx

dt + y(t) dy
dtp

x2(t) + y2(t)
:

At the given instant, x = � 15, y = � 12, dx
dt = 20 and dy

dt = 22. We �nd
that, at that instant, that dD

dt = � 29:4. The ships are approaching each
other at a speed of 29:4 knots. �

Exercise 85. Consider the situation in Example 2.78. Find the position of
the ships and the distance between them 10 minutes later. Calculate the
average rate at which the distance between the ships changed during these
10 minutes, and compare it with the rate of change found in the example.
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Exercise 86. Two ships, the Independence and Liberty, are on intersecting
courses. The Independence travels straight North at a speed of 22 knots,
while the Liberty is traveling straight Northeast at a speed of 20 knots.
Currently the Independence is 12 nautical miles away from the intersection
point of the courses, and the Liberty 15 nautical miles. At which rate does
the distance between the ships decrease?

Exercise 87. A ladder, 7 m long, is leaning against a wall. Right now the
foot of the latter is 1 m away from the wall. You are pulling the foot of the
ladder further away from the wall at a rate of :1 m=sec. At which rate is
the top of the ladder sliding down the wall?

Exercise 88. For air at room temperature we suppose that the pressure
(P) and volume (V ) are related by the equation 24

PV 1:4 = C:

Here C is a constant.

(a) Consider P as a function of V . At which rate does P(V ) change with
respect to V .

(b) At some instant t0 the pressure of the gas is 25 kg=cm2 and the volume
is 200 cm3. Find the rate of change ofP if the volume increases at a
rate of 10 cm3=min.

Exercise 89. A conical cup 6 cm across and 10 cm deep is dripping. When
the water is 8 cm deep, the water level is dropping at a rate of:5 cm=min.
At which rate is the cup losing the water?

Exercise 90. The mass of a particle at velocity v, as perceived by an ob-
server in resting position, is

m
p

1 � v2=c2
;

wherem is that mass at rest andc is the speed of light. This formula is from
Einstein's special theory of relativity. At which rate is the mass changing
when the particle's velocity is 90% of the speed of light, and increasing at
:001c per second?

24 Boyle-Mariotte described the relation between the pressure and volume of a gas. They
derived the equation P V  = C. It is called the adiabatic law. The constant  depends on
the molecular structure of the gas and the temperature. For the purpose of this problem,
we suppose that  = 1 :4 for air at room temperature.
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2.14 Numerical Methods

In this section we introduce some methods for numerical computations.
Their common feature is, that for a di�erentiable function we do not make
a large error when we use the tangent line to the graph instead of the graph
itself. This rather casual statement will become clearer when you look at
the individual methods.

2.14.1 Approximation by Di�erentials

Supposex0 is an interior point of the domain of a function f (x), and f (x)
is di�erentiable at x0. Assume also that f (x0) and f 0(x0) are known. The
method of approximation by di�erentials provides an approximate values
f (x1) if x1 is nearx0. We use the symbol �̀ ' to stand for `is approximately'.
One uses the formula

f (x1) � f (x0) + f 0(x0)(x1 � x0):(2.62)

On the right hand side in (2.62) we havel(x1), the tangent line to the graph
of f (x) at ( x0; f (x0)) evaluated at x1. In the sense of De�nition 2.2, f (x1)
is close tol(x1) for x1 near x0.

Example 2.79. Find an approximate value for 3
p

9.
Solution: We set f (x) = 3

p
x, so we are supposed to �ndf (9). Note

that

f 0(x) =
1
3

x� 2=3; f (8) = 2 ; and f 0(8) =
1
12

:

Formula (2.62), applied with x1 = 9 and x0 = 8, says that

3
p

9 = f (9) � 2 +
1
12

(9 � 8) =
25
12

� 2:0833:

Your calculator will give you 3
p

9 � 2:0801. The method gave us a pretty
good answer. �

Example 2.80. Find an approximate value for tan 46� .
Solution: We carry out the calculation in radial measure. Note that

46� = 45� + 1 � , and this corresponds to �= 4 + �= 180. Use the function
f (x) = tan x. Then f 0(x) = sec2 x, f (�= 4) = 1, and f 0(�= 4) = 2. Formula
(2.62), applied with x1 = ( �= 4 + �= 180) and x0 = �= 4 says

tan 46� = tan
� �

4
+

�
180

�
� tan

� �
4

�
+ sec2

� �
4

� � �
180

�
= 1 +

�
90

� 1:0349:
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Your calculator will give you tan 46� � 1:0355. Again we get a pretty close
answer using the method. �

Remark 10. When you apply (2.62), then you may ask what value to take
for x0. A useful choice will be anx0 which is close tox1, and for which you
have little di�culties �nding f (x0) and f 0(x0).

Exercise 91. Use approximation by di�erentials to �nd approximate values
for

(1) 5
p

34 (2) tan 31� (3) ln 1:2 (4) arctan 1:1:

In each case, compare your answer with one found on your calculator.

We have been causal in (2.62) insofar as we have not estimated the error
which we make using the right hand side of (2.62) instead of of the actual
value of the function on the left hand side. The inequality in De�nition 2.2
provides us with an estimate. Di�erentiability of the function f (x) means
that there exist numbers A and d > 0, such that

jf (x1) � [f (x0) + f 0(x0)(x1 � x0)j � A(x1 � x0)2

wheneverjx1 � x0j < d . Thus, if we know A and d, then we can approximate
the error as long asjx1 � x0j < d .

Example 2.81. Find an approximate value for sin 31� and estimate the
error.

Solution: Set f (x) = sin x. The f 0(x) = cos x, f (�= 6) = 1=2, and
f 0(�= 6) =

p
3=2. Measuring angles in radians we setx0 = �= 6 and x1 =

�= 6 + �= 180. Applying the formula in (2.62), we �nd

sin 31� � sin
�
6

+
�

180
cos

�
6

=
1
2

�
1 +

p
3

�
180

�
� :515115:

The calculator will tell that sin 31 � � :515038.
From the computation in Example 2.11 on page 50 we also know that

we may useA = 1 and d = �= 4 in the di�erentiability estimate. We may
apply the estimate becausejx1 � x0j < �= 4. The estimate assures us that
the error is at most

(x1 � x0)2 =
� �

180

� 2
� :000305:

Comparison of the actual and approximate value con�rm this. �
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Example 2.82. Use approximation by di�erentials to �nd an approximate
value of

p
10 and give an upper bound for the error.

Solution: We use f (x) =
p

x and x0 = 9. The f 0(x) = 1 =(2
p

x),
f (x0) = 3, and f 0(x0) = 1 =6. The formula in (2.62) tells us that

p
10 = f (10) � f (9) + f 0(9)(10 � 9) = 3 +

1
6

� 3:16666:

The calculator will give you
p

10 � 3:16228.
For the error estimate we may use

A =
1

2(
p

x0)3

and any d > 0. This is the A which we picked in (2.18) while proving
Proposition 2.15. The estimate assures us that the error is at most

1
2(

p
x0)3 (x1 � x0)2 =

1
54

:

The actual error is again substantially less than this. �

Exercise 92. Use approximation by di�erentials to �nd approximate values
for

(1) cos 28� (2)
p

26 (3) sin 47� :

In each case, estimate also the maximal error which you may have made by
using the method of approximation by di�erentials.

2.14.2 Newton's Method

We will encounter quite a few situations in which we have to �nd the zeros of
a function. You have learned how to solve a quadratic equation. Assuming
that a 6= 0, the solutions of the equation

ax2 + bx + c = 0 are x1=2 =
1
2a

h
� b�

p
b2 � 4c

i
:

There are more complicated formulas which provide algebraic expressions for
the solutions of an equation of degree 3 and 4. For polynomial equations of
degree 5 and larger there are no general methods which give precise answers.
You are in the same predicament if the equation is not a polynomial one.
In special cases you may be able to �nd the root, but typically you cannot.
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There is a way out. We try to �nd approximate numerical values for
the solutions. As an example let us try to �nd solutions of an intentionally
complicated equation:

3 sinx +
q

7 � x2 sin3(� + cos x) = 0 :

Giving a name to the expression, say calling itf (x), allows us to ask instead
for the zeros of a function. It is worthwhile to ask your favorite computer
program to provide you with a graph of this function. You �nd a graph in
Figure 2.32 for x 2 [� 6; 7].

-6 -4 -2 2 4 6

1

2

3

4

5

6

Figure 2.32: A graph

Existence of Zeros: The �rst question is, whether the function has any
zeros. Looking at the graph, your spontaneous answer will be `yes'. Still, you
may want to justify this statement by a better argument than just saying
`it looks like this.' The Intermediate Value Theorem (see Theorem 2.65)
provides us with an e�cient tool:

� Supposef is di�erentiable on [ a; b]. If f (a) > 0 and f (b) < 0 (or vice
versa), then there exists somec 2 (a; b) so that f (c) = 0.
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Trusting the graph (or you may check this on your calculator), we note
that f (2) > 0 and f (4) < 0. The function f is also di�erentiable. It is made
up (using addition, multiplication, and composition) from functions which
are di�erentiable. The only problem arises when the expression under the
radical sign is not positive, but this does not happen forx in the interval
under consideration. Sof is di�erentiable on the interval [2 ; 4]. We conclude
that f must have a zero between 2 and 4.

Finding Zeros: Suppose now that we found, by some means, a point
x0 which is close to a zerox of f , so f (x) = 0. Newton's method tells us
how to �nd a point x1 which, under appropriate assumptions, is closer tox
than x0. The formula for x1 is

x1 = x0 �
f (x0)
f 0(x0)

:(2.63)

In the hope of improving upon this result, you may iterate the process and
calculate

x2 = x1 �
f (x1)
f 0(x1)

; x3 = x2 �
f (x2)
f 0(x2)

; x4 = x3 �
f (x3)
f 0(x3)

; etc.

Let us try this with our example. Let us pick x0 = 3 as a point which
is not all that far from the zero in the interval [2 ; 4]. We collect our results
is Table 2.3. In the �rst column we keep track of the subscript n. In the
second column you �nd the values of the correspondingxn . In the third
column we recorded the values off for the xn in the second column. The
values are rounded o�. The numerical value for f (x) in the third column
are quickly getting smaller. The value for f (x) in the last row is so small,
that it probably exceeds the accuracy with which the calculation has been
carried out. So, for all practical purposes we should accept thatf (x) is
zero for x = 3 :3930802. We may also say that, without contemplating more
about carrying out calculations to a high degree of accuracy, we have come
as close to �nding a zero off as we can.

Geometry of Newton's Method: Let us give a geometric explanation
for Formula (2.63). Given any x0 at which f is de�ned and di�erentiable,
we obtain the tangent line l(x) to the graph of f at this point. Then x1,
as given in Formula (2.63), is the point at which l(x) intersects the x-axis.
Speci�cally,

l (x) = f 0(x0)(x � x0) + f (x0);

so that

l (x1) = 0 if x1 = x0 �
f (x0)
f 0(x0)

:
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n xn f (xn) & xn f (xn)

0 3:0000000 1:74286522 4:00000000 � 0:425838297

1 3:3591917 0:11578456 4:96343583 � 0:191889204

2 3:3914284 0:00535801 5:08761552 0:0707101492

3 3:3930755 0:00001505 5:06137162 0:00321831863

4 3:3930802 1:2036� 10� 10 5:06005732 8:1136276� 10� 6

Table 2.3: Newton's Method

This means that we accept that the tangent line is close to the graph of
the function, and instead of �nding the zero of the function itself, we �nd
the zero of the tangent line.

Further Reections: Our success in the calculation depended critically
on the choice ofx0. If we chosex0 = 4, then the sequence of numbers turns
out quite di�erently. As you see in the last two columns of Table 2.3, we
seem to be headed for a di�erent zero of the function.

You may also try to start Newton's method with x = 3 :8. A �rst ap-
plication leads you to x = 8 :09433459, a second one tox = 9 :99399994. At
this point the expression under the radical is negative, so that the function
is not even de�ned.

Exercise 93. Find approximate zeros of the following functions:

(1) f (x) = x2 � 2 (2) g(x) = x � 2 sinx (3) h(x) = 2 x � tan x

Make a table as in Table 2.3, and in each example improve your original
guess at least twice.

Exercise 94. Find the �rst positive solution of the equation:

x sinx = cos x:

Hint: Consider the di�erence of the terms in the equation as a function of
x and �nd zeros. Then proceed as in the previous problem.

More that 4000 years ago, the Babylonians used the following algorithm
for approximating radicals. Suppose you like to �nd

p
A. Pick a number x0
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close to
p

A. Set

x1 =
1
2

�
x0 +

A
x0

�
; and more generally xn+1 =

1
2

�
xn +

A
xn

�
;

for n = 0, 1, 2, 3, etc. With each consecutivexn you will get a better
approximation of

p
A.

E.g., let us �nd a good approximation of
p

3. As initial guess, we use
x0 = 2. We apply the formula from above with A = 3. Then

x1 =
1
2

�
2 +

3
2

�
=

7
4

; x2 =
1
2

�
7
4

+
12
7

�
=

97
56

and x3 =
18817
10864

:

We summarize the computation in Table 2.4. In the �rst column you
�nd the subscript n. In the following two columns you �nd the values of
xn , once expressed as a fraction of integers, once in decimal form. In the
last column you see the square ofxn . At least x2

3 is rather close to 3. Your
calculator will give you 1:73205080757 as an approximate value of

p
3. You

see that our value forx3 is rather precise. In fact, if you carry the calculation
one step further and �nd x4, then the accuracy of this approximation of

p
3

will exceed the accuracy of most calculators.

n xn xn x2
n

0 2 2:0000000000 4:0000000000

1 7=4 1:7500000000 3:0625000000

2 97=56 1:7321428571 3:0003188775

3 18817=10864 1:7320508100 3:0000000085

Table 2.4: The Babylonian Method

Exercise 95. Use the Babylonian method to �nd approximate values forp
7,

p
35, and

p
19. Improve each initial guess at least twice. Summarize

your results in a table like the one in 2.4.

Exercise 96. Show that the Babylonian method is the same as Newton's
method applied to the function f (x) = x2 � A.
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Practical Considerations: We have relied on the graph and numerical
calculations to �nd zeros of a function. Both methods provide results with
only a certain degree of accuracy. We may make an e�ort to improve the
accuracy. Still, we can only write down a �nite number of decimal places
for a real number, and in this sense we do not expect to be able to give
precise answers. Our calculators only carry a �nite number of signi�cant
digits, digits we can be sure about. A good computer program may give
a few more signi�cant digits. In any case, this number will decrease if the
calculation involves a considerable number of steps, sometimes in ways which
are di�cult to predict without knowing about the mathematics involved
and the technology which is used. From this point of view, we cannot
achieve more than what we did above. Within the range of accuracy of the
technology we found the zeros of the function as well as we could.

There is one feature of Newton's method which helps. You may say
that with each iteration you make a fresh start, and in this sense previous
round-o� errors don't carry over.

Mathematically speaking, we can analyze under which circumstances
Newton's method provides us with arbitrarily precise answers. We can also
tell, how precise our answer is, or how many steps are required to achieve
a desired accuracy. These are important questions, but they have little
bearings on the calculations which we can carry out, unless we invest a lot
more work.

2.14.3 Euler's Method

Euler's method is designed to �nd, by numerical means, an approximate
solution of the following kind of problem:

Problem 1. Find a function y(t) which satis�es

y0 =
dy
dt

= F (t; y) and y(t0) = y0:(2.64)

Here F (t; y) denotes a given function in two variables, andt0 and y0 are
given numbers.

The �rst condition on y in (2.64) is a �rst order di�erential equation.
The second one is called aninitial condition . It speci�es the value of the
function at one point. For short, the problem in (2.64) is called an initial
value problem.
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Approach in one step: Suppose you want to �nd y(T) for someT 6= t0.
Then you might try the formula

y(T) � y(t0) + y0(t0)(T � t0) = y0 + F (t0; y0)(T � t0):(2.65)

The tangent line to the graph of y at ( t0; y0) is

l (t) = y(t0) + y0(t0)( t � t0);

so that the middle term in (2.65) is just l (T). The �rst, approximate equality
in (2.65) expresses the philosophy that the graph of a di�erentiable function
is close to its tangent line, at least as long asT is close to t0. To get the
second equality in (2.65) we use the di�erential equation and initial condition
in (2.64), which tell us that

y0(t0) = F (t0; y(t0)) = F (t0; y0):

The Logistic Law

The di�erential equation in our next example is known as the logistic law
of population growth. In the equation, t denotes time andy(t) the size of
a population, which depends ont. The constants a and b are called the
vital coe�cients of the population. The equation was �rst used in popula-
tion studies by the Dutch mathematician-biologist Verhulst in 1837. The
equation re�nes the Malthusian law for population growth (see (2.26)).

In the di�erential equation, the term ay expresses that population growth
is proportional to the size of the population. In addition, the members of
the population meet and compete for food and living space. The probability
of this happening is proportional to y2, so that it is assumed that population
growth is reduced by a term which is proportional to y2.

Example 2.83. Consider the initial value problem:

dy
dt

= ay � by2 and y(t0) = y0;(2.66)

where a and b are given constants. Find an approximate value fory(T).

Remark 11. An exact solution of the initial value problem in (2.66) is given
by the equation

y(t) =
ay0

by0 + ( a � by0)e� a(t � t0 )
(2.67)

This is not the time to derive this exact solution, though you are invited to
verify that it satis�es (2.66). We are providing the exact solution, so that
we can see how well our approximate values match it.
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Solution: Setting F (t; y) = ay � by2, you see that the di�erential equa-
tion in this example is a special case of the one in (2.64). According to the
formula in (2.65) we �nd

y(T) � y0 + ( ay0 � by2
0)(T � t0):(2.68)

We expect a close approximation only forT close to t0. �

Let us be even more speci�c and give a numerical example.

Example 2.84. Consider the initial value problem.

dy
dt

=
1
10

y �
1

10000
y2 and y(0) = 300:(2.69)

Find approximate values for y(1) and y(10).
Solution: Substituting a = 1=10, b = 1=10000, t0 = 0, and y0 = 300

into the solution in (2.68), we �nd that

y(1) � 300 +
�

300
10

�
3002

10000

�
(1 � 0) = 321:

According to the exact solution in (2.67), we �nd that

y(t) =
3000

3 + 7e� t=10
:

Substituting t = 1, we �nd the exact value y(1) = 321:4; this number is
rounded o�. So, our approximate value is close.

For T = 10 the formula suggests that y(10) � 510. According to the
exact solution for this initial value problem, y(10) = 538:1. For this larger
value of T, the formula in (2.68) gives us a less satisfactory result. �

Multi-step approach: We like to �nd a remedy for the problem which
we discovered in Example 2.84 forT further away from t0. Consider again
Problem 1. We want to get an approximate value for y(T). For notational
convenience we assume thatT > t 0. Pick several t i betweent0 and T:

t0 < t 1 < t 2 < � � � < t n = T:

Starting out with t0 and y(t0), we use the one step method from above to get
an approximate value for y(t1). Then we pretend that y(t1) is exact, and we
repeat the process. We uset1 and y(t1) to calculate an approximate value for
y(t2). Again we pretend that y(t2) is exact and uset2 and y(t2) to calculate
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y(t3). Iteratively, we calculate [t i +1 ; y(t i +1 )] from [t i ; y(t i )] according to the
formula in (2.65):

[t i +1 ; y(t i +1 )] = [ t i +1 ; y(t i ) + F (t i ; y(t i ))( t i +1 � t i )](2.70)

We continue this process until we reachT.
For reasonably nice25 expressionsF (t; y) the accuracy of the value which

we get fory(T) will increase with n, the number of steps we make (at least if
all steps are of the same length). On the other hand, in an actual numerical
computation we also make round-o� errors in each step, and the more steps
we make the worse the result might get. Experience will guide you in the
choice of the step length.

Example 2.85. Consider the initial value problem

dy
dt

=
1
10

y �
1

10000
y2 and y(0) = 10 :(2.71)

1. Apply the multi-step method to �nd approximate values for y(t) at
t = 5, t = 10, t = 15, : : : , t = 100. Arrange them in a table.

2. Graph the points found in the previous step together with the actual
solution of the initial value problem. It is given by the equation

y(t) =
10000

10 + 990e� t=10
:(2.72)

3. Verify that the function y(t) in (2.72) satis�es the conditions in the
initial value problem in (2.71).

Solution: As points in the multi-step process we use

t0 = 0 ; t1 = 5 ; t2 = 10; t3 = 15; t4 = 20; : : : ; t20 = 100:

For each ti (0 � i � 19) we use the formula

y(t i+1 ) = y(t i ) + 5
�

y(t i )
10

�
y2

i (t i )
10000

�

and calculate y(t1), y(t2), y(t3), : : : , y(t20) consecutively. We summarize
the calculation in Table 2.5.

25 We do not want to make this term precise, but the F (t; y ) in Example 2.83 is of this
kind.
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t y(t) & t y(t) & t y(t)

0 10:00 35 153:96 70 857:73

5 14:95 40 219:09 75 918:74

10 22:31 45 304:62 80 956:07

15 33:22 50 410:55 85 977:07

20 49:28 55 531:55 90 988:27

25 72:70 60 656:05 95 994:07

30 106:41 65 768:87 100 997:02

Table 2.5: Solution of Problem 2.85

In Figure 2.33 you see the graph of the exact solution of the initial value
problem. You also see the points from Table 2.5. The points suggest a graph
which does follow the actual one reasonably closely. But you see that we are
de�nitely making errors, and they get worse ast increases26. You may try
a shorter step length. The points will follow the curve much more closely if
you uset1 = 1, t2 = 2, t3 = 3, : : : , t100 = 100 in your calculation.

We leave it to the reader to verify that the function y(t) in (2.72) satis�es
the conditions in (2.71). �

Steady States: We are not prepared to study di�erential equations in
great depth. In particular, we are not ready to study qualitative aspects of
solutions. Still, there are some note-worthy situations. Consider once more
the initial value problem in (2.64):

y0 =
dy
dt

= F (t; y) and y(t0) = y0:

SupposeF (y0; t) = 0 for all t . Then the constant function y(t) = y0 is a
solution of the problem. Such a solution is called asteady state solution.

Example 2.86. Find the steady states of the di�erential equation (see
(2.34) in Section 2.8)

f 0(t) = af (t) + b:(2.73)

26 It is incidental that the points eventually get closer to the graph again. This is due
to the speci�c problem, and will not occur in general.
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Figure 2.33: Illustration of Euler's Method

Solution: Apparently, f 0(t) = 0 if and only if f (t) = � b=a. So the
constant function f (t) = � b=a is the only steady state of this di�erential
equation.

In review of Example 2.33 in Section 2.8, you see that the steady state in
that example is B (t) = 40 ; 000. I.e., if your loan balance is $40,000.00, the
bank charges you interest at a rate of:5% per month, and you are repaying
the loan at a rate of $ 200.00 per month, then the principal balance of your
account will stay unchanged. Your payments cover exactly the occuring
interest charges.

For the logistic law (see Equation (2.66))

dy
dt

= F (y; t) = ay � by2 = y(a � by)

we �nd that F (y; t) = 0 if and only if y = 0 or y = a=b. There are two
steady state solutions: yu(t) = 0 and ys(t) = a=b.

Let us interpret these steady state solutions for the speci�c numerical
values of a = 1=10 and b = 1=10; 000 in Example 2.85. If the initial value
y0 of the population is positive, then the population size will tend to and
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stabilize27 at y(t) = a=b = 1 ; 000. In this sense,ys(t) = a=b = 1 ; 000 is a
stable steady state solution. It is also referred to as thecarrying capacity.
It tells you which size population of the given kind the speci�c habitat will
support.

If the initial value y0 is negative, then y(t) will tend to �1 as time
increases. Ify0 6= 0, then y(t) will not tend to the steady state y(t) = 0. In
this sense,y(t) = 0 is an unstable steady state. �

Exercise 97. Consider the initial value problem

y0(t) = � 50 +
1
2

y(t) �
1

2000
y2(t) and y0 = y(0) = 200:(2.74)

To make the problem explicit, you should think of a population of deer in a
protected wildlife preserve. There are no predators. The deer are hunted at
a rate of 50 animals per year. The population has a growth rate of 50% per
year. Reproduction takes place at a constant rate all year round. Finally,
the last term in the di�erential equation accounts for the competition for
space and food.

1. Use Euler's method to �nd the population size over the next 30 years.
Proceed in 1 year steps. Tabulate and plot your results.

2. Guess at which level the population stabilizes.

3. Repeat the �rst two steps of the problem if hunting is stopped.

4. Repeat the �rst two steps of the problem if the initial population is
100 animals.

5. Find the steady states of the original equation in which hunting takes
place. I.e., �nd for which values of y you have that y0 = 0? You will
�nd two values. Call the smaller one of them Yu and the larger one
Ys. Experiment with di�erent initial values to see which of the steady
states is stable, and which one is unstable.

Orthogonal Trajectories

Let us explore a di�erent kind of application. Suppose we are given a family
F (x; y; a) = 0 of curves. In Figure 2.34 you see a family of ellipses

Ca : F (x; y; a) = x2 + 3y2 � a = 0 :(2.75)

27 The common language meaning of these expressions su�ces for the purpose of our
discussion, and the mathematical de�nition of `tends to' and `stabilizes at' only make these
terms precise.
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There is one ellipse for eacha > 0. We like to �nd curves Db which in-
tersect the curvesCa perpendicularly. (We say that Db and Ca intersect
perpendicularly in a point ( x1; y1), if the tangent lines to the curves at this
point intersect perpendicularly.) We call such a curveDb an orthogonal tra-
jectory to the family of the Ca's. You also see one orthogonal trajectory in
Figure 2.34.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 2.34: Orthogonal Trajectory to Level Curves

Let us explain where this type of situation occurs. Suppose the curves
Ca are the level curves in a crater. Herea represents the elevation, so that
the elevation is constant along each curveCa. The orthogonal trajectory
gives a path of steepest descent. A new lava ow which originates at some
point in the crater will follow this path.

Suppose that each ellipse represents an equipotential line of an electro-
magnetic �eld. The orthogonal trajectory provides you with a path which
is always in the direction of the most rapid change of the �eld. A charged
particle will move along an orthogonal trajectory.

Supposea stands for temperature, so that along each ellipse the tem-
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perature is constant. In this case the curves are called isothermal lines28.
A heat seeking bug will, at any time, move in the direction in which the
temperature increases most rapidly, i.e., along an orthogonal trajectory to
the isothermal lines.

Supposea stands for the concentration of a nutrient in a solution. It is
constant along each curveCa. On their search for food, bacteria will follow
a path in the direction in which the concentration increases most rapidly.
They will move along an orthogonal trajectory.

Example 2.87. Find orthogonal trajectories for the family of ellipses

Ca : F (x; y; a) = x2 + 3y2 � a = 0 :(2.76)

Solution: Di�erentiating the equation for the ellipses, we get

2x + 6y
dy
dx

= 0 or
dy
dx

=
� x
3y

:

The slope of the tangent line to a curveCa at a point ( x1; y1) is � x1
3y1

. If
a curve Db intersects Ca in (x1; y1) perpendicularly, then we need that the
slope of the tangent line toDb at this point is 3y1

x1
. Thus, to �nd an orthog-

onal trajectory to the family of the Ca's we need to �nd functions which
satisfy this di�erential equation. If we also require that the orthogonal tra-
jectory goes through a speci�c point (x0; y0), then we end up with the initial
value problem

dy
dx

=
3y
x

and y(x0) = y0:

This is exactly the kind of problem which we solved with Euler's method. In
this particular example it is not di�cult to �nd solutions for the di�erential
equation. They are functions of the form y(x) = bx3. The orthogonal
trajectory shown in Figure 2.34 has the equationy = x3=25. There is one
orthogonal trajectory which does not have this form, and this is the curve
x = 0.

Let us apply Euler's method to solve the problem. Let us �nd approxi-
mate values for the initial value problem

dy
dx

=
3y
x

and y(1) =
1
25

:

28 The idea of isothermal lines, and with this the method in all of these applications,
was pioneered by Alexander von Humbold (1769{1859).
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Use x0 = 1, x1 = 1 :2, x2 = 1 :4, : : : , x20 = 5.
We set (x0; y0) = (1 ; 1=25) and calculate (xn ; yn) according to the for-

mula

yn = yn� 1 + :2
3yn� 1

xn� 1
for n = 1 ; 2; : : : ; 20:

Without recording the results of this calculation, we graphed the points in
Figure 2.34. �

Exercise 98. Consider the family of hyperbolas:

Ca : x2 � 5y2 + a = 0 :

There is one hyperbola for each value ofa, only for a = 0 the hyperbola
degenerates into two intersection lines.

1. Graph several of the curvesCa.

2. Find the di�erential equation for an orthogonal trajectory.

3. Use Euler's method to �nd points on the orthogonal trajectory through
the point (3; 4). Use the points x0 = 3, x1 = 3 :2, x2 = 3 :4, : : : ,
x20 = 7. Plot the points ( xn ; yn) in your �gure.

4. Check that the graph of y(x) = bx� 5 is an orthogonal trajectory to the
family of hyperbolas for every b. Determine b, so that the orthogonal
trajectory passes through the point (3; 4), and add this graph to your
�gure.

2.15 Summary

Let us collect once more all the rules of di�erentiation and provide a table
of some of the important functions which we learned how to di�erentiate.
We assume thatf and g are real valued functions.

� Linearity of the derivative (see (2.37)): If f and g are di�erentiable at
x and c is a real number, then

(f + g)0(x) = f 0(x) + g0(x) and (cf )0(x) = cf 0(x):

� Product rule (see (2.41)): If f and g are di�erentiable at x, then

(fg )0(x) = f 0(x)g(x) + f (x)g0(x):
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� Quotient rule (see (2.41)): If f and g are di�erentiable at x and g(x) 6=
0, then

�
f
g

� 0

(x) =
f 0(x)g(x) � f (x)g0(x)

[g(x)]2 :

� Chain rule (see (2.51)): If h(x) = f (g(x)), g is di�erentiable at x and
f is di�erentiable at g(x), then

h0(x) = f 0(g(x))g0(x):

� Generalized power rules (see Examples 2.49 and 2.57): Iff (x) = uq(x),
u is di�erentiable at x and either q is an integer or u(x) > 0, then

f 0(x) = qu0(x)uq� 1(x):

� Derivative of inverse functions (see Theorem 2.69): Ifg is the inverse
of a di�erentiable function f , and f 0(x) 6= 0, resp. f 0(g(y)) 6= 0, then

g0(f (x)) =
1

f 0(x)
and g0(y) =

1
f 0(g(y))

:

Most of the derivatives in the following table were calculated in this
chapter, and the others can be obtained by the methods in this chapter,
usually by an argument which is similar to one used in one of the other
examples.

Previously, we have not discussed the functions arccot and arcsec. These
are the inverses for the cotangent and secant function. Their domains are
speci�ed in the table. You have some freedom in choosing their range. The
formula for the derivative holds with the indicated choice. There are sign
changes if you alter the choice.
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f (x) f 0(x) Assumptions

xq qxq� 1 q a natural number, or x > 0

ex ex x 2 (�1 ; 1 )

ln jxj 1=x x 2 (�1 ; 1 ); x 6= 0

sinx cosx x 2 (�1 ; 1 )

cosx � sinx x 2 (�1 ; 1 )

tan x sec2 x all x for which tan x is de�ned

cot x � csc2 x all x for which cot x is de�ned

secx secx tan x all x for which secx is de�ned

cscx � cscx cot x all x for which cscx is de�ned

arctan x 1
1+ x2 x 2 (�1 ; 1 )

arcsinx 1p
1� x2 x 2 (� 1; 1); arcsinx 2 (� �= 2; �= 2)

arccosx � 1p
1� x2 x 2 (� 1; 1); arccosx 2 (0; � )

arccotx � 1
1+ x2 x 2 (�1 ; 1 ); arccotx 2 (0; � )

arcsecx 1
jxj

p
x2� 1

x < � 1 or x > 1; arcsecx 2 (0; �= 2) [ (�= 2; � )

Table 2.6: Some Derivatives



Chapter 3

Applications of the
Derivative

During a debate on television in October 1984 one of the presidential can-
didates stated that \ the rate at which the rate of poverty is increasing is
decreasing1." Apparently, this is a statement about the poverty rate as a
function of time, but what does it really mean? The speaker was using
derivatives (or rates of change) to make statements about this function. In
fact, he did not only use the (�rst) derivative, but also the second derivative,
the derivative of the derivative.

We will discuss functions on closed intervals. For this reason we extend
our de�nition of di�erentiability of a function on an interval, so that it allows
not only open intervals. Then we state Cauchy's Mean Value Theorem. It
has consequences (corollaries) which we will use frequently. Next we will
relate the �rst derivative to monotonicity properties of functions. We will
use it to decide whether a function is increasing or decreasing, both on
intervals and near a point. Next we de�ne the second and higher derivatives.
We relate the second derivative to concavity properties of the function, both
on intervals and near a point. The �rst and second derivative are important
tools for graphing functions and for �nding its extrema. Finding the extrema
of a function, i.e., solving optimization problems, is important in many
applications of calculus. We will give some examples.

1We will discuss this sentence once we have developed some tools, see Remark 17.
According to the transcript of the debate, which was published in the New York Times
on October 8th, 1984, page B6, the precise quote is:\Some of these facts and �gures just
don't add up. Yes, there has been an increase in poverty but it is a lower rate of increase
than it was in the preceding years before we got here. It has begun to decline, but it is still
going up. "

137
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3.1 Di�erentiability on Closed Intervals

So far we considered the idea of di�erentiability for functions which are
de�ned on (a union of) open intervals, see De�nition 2.8. We now consider
this idea for functions which are de�ned on any kind of interval.

Let I be any interval, open (of the form (a; b)), closed (of the form [a; b]),
or half open (of the form [a; b) or (a; b]). Let J be another interval which
contains I , so I � J . Let f be a function which is de�ned on I and F a
function which is de�ned on J . We say that F extendsf , or that F is an
extensionof f , if these functions agree onI , i.e., F (x) = f (x) for all x 2 I .

De�nition 3.1. A function is said to be di�erentiable on an interval I if it
extends to a di�erentiable function on an open interval.2

Remark 12. One needs to show that the derivative will be unique at all
points in I . For this one needs that the interval I in this de�nition is neither
empty nor consists of exactly one point. This will be the case whenever we
consider a function on a closed interval.

Let us discuss two examples. Consider the functionf (x) = x2 on the
interval [0; 1]. Is it di�erentiable on this interval? Yes, as extension we can
use the functionF (x) = x2, for which we use the domain (�1 ; 1 ). We have
seen that the function F (x) is di�erentiable. So f (x) is di�erentiable. In
contrast, the function g(x) =

p
x is not di�erentiable on the interval [0 ; 1 ).

It is di�erentiable on all intervals of the form [ a;1 ), where a > 0. The only
sensible candidate for the tangent line to the graph ofg(x) at the point (0 ; 0)
on the graph is a vertical line. The slope of this line is not a real number.

3.2 Cauchy's Mean Value Theorem

Let us start out with an

Example 3.2. For the graph pertinent to the example, see Figure 3.1. Con-
sider the function

f (x) = x2:

The line S through the points ( :5; f (:5)) = ( :5; :25) and (2:5; f (2:5)) =
(2:5; 6:25) has slope

s =
f (2:5) � f (:5)

2:5 � :5
=

6:25� :25
2:5 � :5

= 3 :
2This de�nition is technically less painful and conceptually more sensible than one

which uses one-sided derivatives.
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Figure 3.1: Cauchy's Theorem

We call the slopes of the line S the average slope (or average rate of change)
of f over the interval [:5; 2:5]. Now, remember that

f 0(x) = 2 x:

If c = 3=2, then f 0(c) = 3. So, the tangent line L to the graph of f at
(3=2; f (3=2)) has the same slope as the lineS. This means, for the number
c = 3=2, :5 < c < 2:5, we have that

f 0(c) =
f (2:5) � f (:5)

2:5 � :5
:

In other words, there exists a numberc between the endpoints of the interval,
such that the slope of the graph off at this point equals the average slope
of f over the interval. In geometric terms it means that there exists a point
in the interval such that the tangent line at this point is parallel to the line
S, the secant line over the interval. �

The following theorem is named after Augustin-Louis Cauchy (1789{
1857). It expresses the observation which we made in the example. The
average slope of a di�erentiable function over an interval equals the slope of
the graph of the function at some point in the interval.
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Theorem 3.3 (Chauchy's Mean Value Theorem). Let f be a real val-
ued function which is de�ned and di�erentiable on the interval [a; b], where
a < b.3 Then there exists a numberc 2 (a; b) such that

f 0(c) =
f (b) � f (a)

b� a
:

The following special case of the theorem, called Rolle's theorem (named
after Michel Rolle (1652{1719)), is of particular interest.

Theorem 3.4 (Rolle's Theorem). Let f be as in Theorem 3.3. Iff (a) =
f (b), then there exists a numberc betweena and b (i.e., a < c < b ) such
that

f 0(c) = 0 :

We are not going to say anything about the proof of these two theorems,
except that Cauchy's theorem and Rolle's theorem are equivalent (each is
an easy consequence of the other one), and that the proof of both of them
depends heavily on the completeness4 of the real numbers. We are also not
interested in �nding the points c, as they occur in the two theorems. We
are interested in more general consequences.

Corollary 3.5. Let f be a real valued function which is de�ned and di�er-
entiable on an interval I . If f 0(x) = 0 for all x 2 I , then f is constant on
this interval. In other words, there exists a numberd such that f (x) = d for
all x 2 I .

Proof. A di�erent formulation of the claim is that f (a) = f (b) for all a,
b 2 I . We prove this statement using Cauchy's theorem. If f (a) 6= f (b),
then a 6= b and there exists somec 2 (a; b), such that

f 0(c) =
f (b) � f (a)

b� a
6= 0 :

But this contradicts the assumption that f 0(c) = 0 for all c 2 I , and the
corollary is proved.

We are going to use the following corollary frequently.
3More typically it is assumed that the function is continuous on [ a; b] and di�erentiable

on (a; b). Then the same conclusion is true. But, as we have not introduced continuous
functions, we content ourselves with this more restrictive version of the theorem.

4We discussed this idea in Theorem 5.7
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Corollary 3.6. Let h and g be functions which are de�ned and di�erentiable
on an interval I . If h0(x) = g0(x) for all x 2 I , then h and g di�er by a
constant, i.e., there exists a numberd such that

h(x) = g(x) + d

for all x 2 I .

Proof. Apply the previous corollary to f (x) = h(x) � g(x).

Uniqueness of Solutions of Some Di�erential Equations

Let us apply the principles which we just discussed to �nding all solutions
of some di�erential equations. You are familiar with the fact that, for given
numbers b and c, c 6= 0, there is exactly one numberx such that

cx = b:(3.1)

Consideringx as the unknown, you can also express this by saying that (3.1)
has a unique solution. In a di�erential equation the unknown is a function.
We like to see to which extent some di�erential equations have a unique
solution.

Example 3.7. Find all functions f (x) which are de�ned and di�erentiable
on the entire real line, and for which f 0(x) = 0 for all x.

Solution: We know that the derivative of a constant function vanishes
(is everywhere zero). Furthermore, Corollary 3.5 tells us that constants are
the only functions with this property. So we found all functions which have
the desired properties. The functions which we were looking for are the
constant functions. �

Example 3.8. Find all functions f (x) which are de�ned and di�erentiable
on the entire real line, and whose derivative is

f 0(x) = 2 x:

Solution: There is one obvious solution for the problem, the function
f (x) = x2. Corollary 3.6 says that any other solution of the problem di�ers
from f only by a constant, so that the functions

f (x) = x2 + c

are the only functions with the desired property. Here c is an arbitrary
constant. �
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We may formulate the ideas of the last two examples in a more general
way.

Example 3.9. Suppose you are given a functionh(x) which is de�ned on
an interval I . Find all functions f (x) which are de�ned on I and for which

f 0(x) = h(x):(3.2)

Solution: Find5 one function H (x) which is de�ned on I , and for which
H 0(x) = h(x). If there is such a function, then any solution of (3.2) is of
the form

f (x) = H (x) + c;

where c is an arbitrary constant. �

Exercise 99. Find all function f (x) which satisfy the equation:

(1) f 0(x) = 5 x2 + 7 (2) f 0(x) = 3 sin 5x (3) f 0(x) = sec2 x:

Hint: Guess a function H (x), such that H 0(x) = f 0(x).

In the following example we verify the second claim which we made in
Theorem 2.12. We like to see which functions satisfy the Malthusian Law.
This law was the basis for the population and radioactive decay models
discussed in Section 2.7.

Example 3.10. Find all functions f (x) which are de�ned and di�erentiable
on an interval and for which

f 0(x) = af (x):

Solution: We know some functionsf (x) which satisfy the di�erential
equation, namely all functions of the form f (x) = ceax wherec is a constant.
We want to see once again that these are all of the solutions of the di�erential
equation.

Let f (x) be any function which satis�es the di�erential equation on some
interval. Consider the function

h(x) = f (x)e� ax :
5For the time being you depend on being able to guess such a function H (x). By

di�erentiating H (x) you can check whether you guessed right.
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As a product of di�erentiable functions, h is di�erentiable and its derivative
is

h0(x) = f 0(x)e� ax � af (x)e� ax = af (x)e� ax � af (x)e� ax = 0 :

Corollary 3.5 tells us that h(x) is a constant function. Calling the constant
c we �nd that

f (x) = ceax :

This means that all solutions of the di�erential equation f 0(x) = af (x) are
of the form f (x) = ceax , where c is a constant. With this we have veri�ed
the second claim in Theorem 2.12. �

Without any further information, the solutions of the di�erential equa-
tions are not unique. In either of the above problems, we get a unique
solution if we prescribe the value of the function at one point.

Example 3.11. Find all functions f (x) which are de�ned and di�erentiable
on the entire real line and for which

f 0(x) = 2 f (x) and f (0) = 3 :

Solution: We learned that the only functions which satisfy the di�eren-
tial equation f 0(x) = 2 f (x) are of the form f (x) = ce2x . Substituting x = 0
into this expression we see thatf (0) = ce0 = c. We conclude that c = 3 and
that f (x) = 3 e2x . �

Remark 13. The uniqueness of the solution of an initial value problem
as in the previous example is not only of theoretical importance. Imagine
you study the growth rate of a strain of bacteria. Before you can publish
your result, it must be certain that your experiment can be reproduced at
a di�erent time in a di�erent location. That is a requirement which any
experiment in science must satisfy. If there is more than one mathematical
solution to your problem, then you have to expect that the experiment can
go either way, and this would invalidate your experiment.

Exercise 100. Find the unique solutions of the problems:

1. f 0(x) = 5 f (x) and f (0) = 7.

2. f 0(x) = 3 f (x) and f (2) = 3.

3. f 0(x) = 2 x2 + 3 and f (2) = 1.
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3.3 The First Derivative and Monotonicity

One of the interesting properties of a function is whether it is increasing or
decreasing. We might want to �nd out whether the part of a population
which is infected with a disease is increasing or decreasing. We might want
to know how the level of pollution in a body of water is changing. The �rst
derivative of a function gives us information of this kind. Let us �rst recall
the de�nition of the properties increasing and decreasing. Then we use the
�rst derivative to characterize situations in which a function is monotonic
and demonstrate these with some examples.

Monotonicity on Intervals

We called a function f increasing (resp. decreasing) if

f (b) > f (a) (resp. f (b) < f (a))

wheneverf is de�ned at a and b and b > a.

Theorem 3.12. Suppose thatf is a function which is de�ned and di�er-
entiable on an interval I .

1. If f 0(x) > 0 for all x 2 I , then f is increasing on I .

2. If f 0(x) < 0 for all x 2 I , then f is decreasing onI .

3. More generally, the conclusions in (1) and (2) still hold if in each
�nite interval J � I there are only �nitely many points at which the
assumption f 0(x) > 0, resp. f 0(x) < 0, is not satis�ed.

Proof. We show (1). Let a and b be points in I , and suppose thata < b.
Cauchy's theorem says that there exists a pointc, a < c < b , such that

f 0(c) =
f (b) � f (a)

b� a
:

We have that f 0(c) > 0 and b� a > 0, and it follows that f (b) � f (a) > 0.
This means that f (b) > f (a). The proof of the second claim is similar. We
leave it and the generalization of both statements to the reader.

Exercise 101. In Figures 3.2 and 3.3 you see the graphs of a function and
its derivative. For each pair
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Figure 3.2: Graphs off and f 0.
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Figure 3.3: Graphs ofg and g0.

1. decide which graph belongs belongs to the function and which one to
its derivative.

2. determine (approximately) intervals on which the derivative is positive,
resp., negative.

3. determine (approximately) intervals on which the function is increas-
ing, resp., decreasing.

Example 3.13. Show that the natural logarithm function is increasing on
the interval (0 ; 1 ).

Solution: In Theorem 2.13 on page 52 we stated that ln0x = 1=x. So
ln0x > 0 for all x 2 (0; 1 ). It follows from Theorem 3.12 that ln x is
increasing onx 2 (0; 1 ). You may check this result by having a look at the
graph of the natural logarithm functions in Figure 1.13. �

Example 3.14. Show that the exponential function (for basee) is increas-
ing on the entire real line.

Solution 1: The inverse of an increasing function is increasing (see
Proposition 5.25 on page 291) and the exponential function is the inverse
of the logarithm function. It follows from the previous example that the
exponential function is increasing on the entire real line.

Solution 2: The exponential function is positive everywhere, see The-
orem 1.12, and so is its derivativedex =dx = ex . Once again, Theorem 3.12
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tells us that the function is increasing.6

Finally, you should con�rm the result by having a look at the graph of
the exponential function in Figures 1.12. �

Example 3.15. Discuss the monotonicity properties of the function

f (x) = 1 =x:

Solution: This function is de�ned and di�erentiable on the set of all
nonzero real numbers. The derivative of the function is

f 0(x) = � 1=x2;

and f 0(x) < 0 for all nonzero real numbers. According to Theorem 3.12,
this means that f (x) is decreasing on the interval (�1 ; 0), and that f (x)
is decreasing on the interval (0; 1 ). The function is not decreasing on the
union of the two intervals.7 Be sure to graph the function to con�rm this
�nding. �

Example 3.16. Show that the arctangent function

f (x) = arctan x

is increasing on the entire real line.
Solution: We discussed this function in Example 2.71 on page 106. It

is the inverse of the tangent function, and it is de�ned and di�erentiable on
the entire real line. We found that

arctan0x =
1

1 + x2 :

Apparently, arctan 0x > 0 for all real numbers, and this means that the
arctangent function is increasing on (�1 ; 1 ). �

Exercise 102. Discuss the monotonicity properties of the following func-
tions:

(1) f (x) =
p

x (2) g(x) =
1
x2 (3) h(x) =

1
x3 (4) k(x) = arccot x:

6This solution stands on shaky grounds. You may say that we asserted the monotonicity
of the exponential function in Theorem 1.12, so that there is nothing left to be shown.

7The example illustrates that it is crucial in Theorem 3.12 that we deal with functions
which are de�ned and di�erentiable on an interval.
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Example 3.17. You may be aware of the fact that warm blooded animals
that live in cold climates are larger that their relatives of the same species
that live in warm climates. Similarly, cold blooded animals that live in cold
climates are smaller that their relatives of the the same species that live in
a warm climate. This has been explained based on a simple mathematical
observation and the theory of Darwin.

Let us �rst discuss the relevant mathematics. Consider a cube with side
length a. Its surface area isA(a) = 6 a2 and its volume is V (a) = a3. Let us
de�ne a function

E(a) =
A(a)
V (a)

=
6
a

:

So E(a) gives the ratio between the surface area and the volume.
Similarly, as you may remember or look up in a collection of formulas,

the surface area of a ball of diameterd is A(d) = �d 2, and its volume is
V (d) = �d 2=6. Also for this shape we �nd that the ratio of A and V is

E(d) =
A(d)
V (d)

=
6
d

:

Consider any geometric shape, and suppose that you vary its size uni-
formly in all directions. If d denotes the length in any direction, you will
�nd again that

E(d) =
A(d)
V (d)

=
6
d

:

It takes some work to justify this formula, but it can be done based on the
example of the cube. The important fact is that

E 0(d) = �
6
d2 < 0(3.3)

for all d > 0. In plain English this means, as the size of an animal increases
the ratio of surface area to volume decreases.

Now let us look at animals and the climate in which they live. A warm
blooded animal needs energy to maintain its body temperature, particularly
in cold climates. It loses heat through its surface, and the heat loss is
proportional to the surface area and the temperature di�erence. Thus it is
of advantage if, in relation to its volume, the surface area is small. This ratio
improves (decreases) as the size of the animal gets bigger. Natural selection
(Darwinism) should favor the larger specimens of a warm blooded species
in a cold climate.
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In a hot climate, the energy created by an active animal may raise the
body temperature so that it exceeds its regular temperature. So the animal
needs to cool down by giving o� heat to its surrounding. It is of advantage if
the surface area is large, in comparison to the volume. This ratio improves
as the size of the animal gets smaller. So natural selection should favor
smaller specimens of a warm blooded species in a warm climate.

For cold blooded animals the situation is just the other way around.
Cold blooded animals have to absorb heat through their surface to reach or
maintain the temperature at which they can operate (move about and �nd
food). They have to heat up their entire body (volume) by absorbing heat
through their surface. In particular, in cold climates it is important that
the surface area is large, in comparison to the volume. This ratio improves
as the animal gets smaller, and in this sense natural selection should favor
smaller specimens of cold blooded animals in a cold climate.

Needless to say, there are other mechanisms to increase the surface area
of a body than decreasing its size, and the maintenance of the body temper-
ature is only one factor which inuences the size of specimens of a species.
There are many more. Larger animals need more food, are stronger but
cannot hide as well, and are often less agile. All of these factors need to be
taken into account to determine the optimal size of an animal. �

So far we have only discussed examples where we used (1) and (2) of
Theorem 3.12. Let us show how to use the conclusion in (3). To apply it we
need to determine intervals on which a function does not change signs. We
recall a procedure which works well for the functions treated in these notes.

De�nition 3.18. Supposef (x) is a function. We call a point x0 on the
real line exceptional if either f (x0) = 0 or f (x0) is not de�ned.

The following result is an immediate consequence of the Intermediate
Value Theorem, see Theorem 2.65 on page 103. Expressed casually it says
that a di�erentiable function does not change signs between exceptional
points.

Proposition 3.19. Supposef (x) is a di�erentiable function and f (x) has
no exceptional points in the interval (x0; x1). Then f (x) > 0 for all points
in the interval (x0; x1), or f (x) < 0 for all points in (x0; x1). In particular,
if f (x) > 0 (resp., f (x) < 0) for one point x 2 (x0; x1), then f (x) > 0
(resp., f (x) < 0) for all points x 2 (x0; x1).

Example 3.20. Find the intervals on which the function

f (x) =
x2(x2 � 4)

x2 + 2x � 15
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is positive, resp., negative.
Solution: First, let us determine the points where the function is zero.

These are the points where the numerator vanishes. The numerator of the
expression for the function factors asx2(x � 2)(x + 2), and this expression is
zero if and only if one of its factors is zero. This provides us with exceptional
points x = 0, x = 2, and x = � 2.
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Figure 3.4: Exceptional Points
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Figure 3.5: Exceptional Points

Next, let us determine the points where the function is not de�ned. The
expression forf (x) is unde�ned wherever the denominator is zero. It factors
as (x +5)( x � 3). So we �nd two more exceptional points,x = 3 and x = � 5.

The proposition tells us that on the intervals in between these exceptional
points the function does not change signs. The intervals are (�1 ; � 5),
(� 5; � 2), (� 2; 0), (0; 2), (2; 3) and (3; 1 ).

Counting signs of the factors in the expression forf (x), we seef (x) is
positive on the interval ( �1 ; � 5), negative on (� 5; � 2), positive on (� 2; 0)
and on (0; 2), negative on (2; 3), and positive on (3; 1 ). You see that the
sign changes at some, but not all, exceptional numbers. You see a graph of
the function in Figures 3.4 and 3.5. We had to use two di�erent y-scales to
be able to display di�erent aspects of the graph. �

Exercise 103. Find intervals on which the following functions do not change
signs. Decide whether the functions are positive or negative on these inter-
vals.

(1) f (x) = x3 � x2 � 5x � 3 (2) g(x) =
x

x3 + 5x2 � 4x � 20
:
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We are ready to discuss the monotonicity of functions whose derivative
vanishes at some points.

Example 3.21. Find intervals on which the function

f (x) = 3 x2 + 5x � 4

is monotonic.
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Figure 3.6: A quadratic polyno-
mial, f (x) = 3 x2 + 5x � 4
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Figure 3.7: A cubic polynomial,
p(x) = x3 � 3x2 � 9x + 3

Solution: We graphed the function in Figure 3.6. It is de�ned and
di�erentiable on the real line. Its derivative is

f 0(x) = 6 x + 5 :

In particular, f 0(x) > 0 if x > � 5=6, i.e., if x 2 (� 5=6; 1 ). So f 0(x) > 0
for all points x 2 [� 5=6; 1 ), except at the single point x = � 5=6. Theo-
rem 3.12 (3) says thatf is increasing on the interval [� 5=6; 1 ). By a similar
argument, f is decreasing on the interval (�1 ; � 5=6]. �

Example 3.22. Find intervals on which the degree three polynomial (for a
graph see Figure 3.7)

p(x) = x3 � 3x2 � 9x + 3

is monotonic.
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Solution: The function is de�ned and di�erentiable on the real line. Its
derivative is

p0(x) = 3 x2 � 6x � 9 = 3(x2 � 2x � 3) = 3( x � 3)(x + 1) :

We factored p0(x) so that it is easy to decide where it is positive or negative.
The product is positive if (x � 3) and (x + 1) are both positive ( x > 3)
or if both are negative (x < � 1). We conclude that p(x) is increasing on
the interval [3; 1 ) and that it is increasing on the interval ( �1 ; � 1]. The
derivative is negative on the interval (� 1; 3) because then (x � 3) is negative
and (x + 1) is positive. The theorem implies that p(x) is decreasing on the
interval [ � 1; 3]. �

Example 3.23. Find intervals on which the rational function

f (x) =
x2 + 3x
x � 1

is monotonic.
Solution: The simpli�ed expression for the derivative of f is

f 0(x) =
(x + 1)( x � 3)

(x � 1)2 :

The important aspect of simplifying the expression for the derivative in
this form is, that numerator and denominator are expressed as products of
terms, and for each of them it is apparent where it is zero. We see that the
exceptional points for f 0(x) are x = 1, x = � 1 and x = 3. We conclude that
f 0(x) does not change signs on the intervals (�1 ; � 1), (� 1; 1), (1; 3), and
(3; 1 ). Counting the signs of the factors off 0(x), we conclude that f 0(x) > 0
on the intervals (�1 ; � 1) and (3; 1 ), and f 0(x) < 0 on the intervals (� 1; 1)
and (1; 3). Observe that f (x) is de�ned and di�erentiable on the entire real
line with the only exception of x = 1. We conclude that f (x) is increasing
on the (�1 ; � 1] and [3; 1 ). The function is decreasing on the intervals
[� 1; 1) and (1; 3]. �

Example 3.24. Find intervals on which the function

f (x) = sin 2 x + 2 sin x

is monotonic. Restrict your discussion to the interval [0; 2� ].
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Solution: We di�erentiate the function and rewrite the expression for
the derivative so that it is easier to �nd its exceptional points.

f 0(x) = 2 cos 2x + 2 cosx

= 2[2 cos2 x + cos x � 1]

= 4(cos x + 1)
�

cosx �
1
2

�
:

To see the second equality we used that cos 2x = cos2 x � sin2 x and sin2 x =
1 � cos2 x. To �nd the third equality, we solved a quadratic equation in
cosx. We �nd exceptional points where cosx = � 1 (i.e., x = � ) and where
cosx = 1

2 (i.e., x = �
3 and x = 5�

3 ).
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Figure 3.8: A function and its derivative.

Observe that f is di�erentiable on [0; 2� ], and that f 0(x) 6= 0 at the end
points of this interval. This provides us with the intervals [0 ; �= 3), (�= 3; � ),
(�; 5�= 3) and (5�= 3; 2� ] on which f 0 does not change sign. Checking the
sign of f 0 (at one point) in each of the intervals, we �nd that f 0(x) > 0 for
x 2 [0; �= 3) and x 2 (5�= 3; 2� ], and f 0(x) < 0 for x 2 (�= 3; � ) and (�; 5�= 3).
We conclude that f is increasing on the interval [0; �= 3] and [5�= 3; 2� ]. The
function is decreasing on the interval [�= 3; 5�= 3], and in this interval there
are three points at which f 0(x) is not positive.
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You may con�rm the calculation by having a look at Figure 3.8. There
you see the graph of the function (solid line) and the graph of its derivative
(dashed line). As you see, whereverf 0(x) is positive, there f (x) is increasing.
Wherever f 0(x) is negative, there f (x) is decreasing. �

Exercise 104. Con�rm the computations in Example 3.23 by graphing the
function and its derivative in the same set of coordinates. Label the graphs of
the functions, and indicate the intervals on which the function is increasing,
resp. decreasing, and on which the derivative is positive, resp. negative.

Exercise 105. Find intervals on which the function f increases and inter-
vals on which f decreases. In the last two problems, (g) and (h), restrict
yourself to the interval [0; 2� ].

(a) f (x) = 3 x2 + 5x + 7

(b) f (x) = x3 � 3x2 + 6

(c) f (x) = ( x + 3) =(x � 7)

(d) f (x) = x + 1=x

(e) f (x) = x3(1 + x)

(f) f (x) = x=(1 + x2)

(g) f (x) = cos 2x + 2 cosx

(h) f (x) = sin 2 x �
p

3 sinx

Monotonicity at a Point

It is quite natural to ask what it means that a function is increasing at a
point, and how this concept is related to the one of being increasing on an
interval. We address both questions in this subsection.

Let us say that a function is increasing at a point c if f (x) < f (c) for all
x in some interval to the left of c and f (x) > f (c) for all x in some interval
to the right of c. Expressed more formally

De�nition 3.25. Supposef is a function and c is an interior point of its
domain. We say that f is increasing at c if, for some d > 0,

f (x) < f (c) for all x 2 (c � d; c) and f (x) > f (c) for all x 2 (c; c+ d).

We say that f is decreasingat c if this statement holds with the inequalities
reversed.

Being increasing or decreasing at a pointc is a local property. We are
making a statement about the behavior of the function on some open interval
which contains c. Being increasing on an interval is a global property. For
the global property the interval is given to us. For the local property we may
chose the, possibly rather small, interval. The global property has to hold
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for any two points in the given interval. For the local property we compare
f (x) to f (c) where c is �xed and x is any point in an open interval around
c which we may chose.

Theorem 3.26. Supposef is a function which is de�ned on an open inter-
val I . Then f is increasing (decreasing) onI if and only it it is increasing
(decreasing) at each point in I .

This theorem establishes the relation between the local and the global
property. The `only if ' part is not di�cult to show, but the `if ' part uses
some deeper facts about �nite closed intervals. Our second result gives us a
valuable tool to detect monotonicity of functions at a point.

Proposition 3.27. Let f be a function and c an interior point of its do-
main. If f is di�erentiable at c and f 0(c) > 0, then f is increasing at c. If
f 0(c) < 0, then f is decreasing atc.

Remark 14. A function does not have to be di�erentiable to be increas-
ing. Graph the function f (x) = 2 x + jxj to convince yourself of this fact.
A function can be di�erentiable and increasing at a point x, even if the
assumptions of Proposition 3.27 do not hold, i.e.,f (x) = x3 is increasing
at x = 0, but if f 0(0) = 0. A function can also be increasing at a point
x, but there is not open interval which contains x such that the function is
increasing on this interval.

Remark 15. The ideas of of a function being increasing or decreasing at
a point may be generalized to cover domains of functions which are half-
closed or closed intervals, and where we like to make a statement about the
behavior of a function at an endpoint. We have no speci�c needs for such
statements, but the motivated reader is encouraged to explore them.

3.4 The Second and Higher Derivatives

Let f (x) be a function which is de�ned on an open interval, or a union of
open intervals. If the function is di�erentiable at each point of its domain,
then f 0(x) is again a function with the same domain asf (x). We may
ask whether the function f 0(x) is di�erentiable. Its derivative, wherever it
exists, is called the second derivative off . It is denoted by f 00(x). This
process can be iterated. The derivative of the second derivative is called the
third derivative, and denoted by f 000(x), etc. We will make use of the second
derivative. Leibnitz's notation for the second derivative of a function f (x)
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is d2f=dx 2. Here is a sample computation in which you are invited to �ll in
the details:

d2

dx2 esin x =
d

dx
cosxesin x = ( � sinx + cos2 x)esin x :

f (x) f 0(x) f 00(x) f 000(x)

xq qxq� 1 q(q � 1)xq� 2 q(q � 1)(q � 2)xq� 3

ex ex ex ex

ln jxj 1=x � 1=x2 2=x3

sinx cosx � sinx � cosx

cosx � sinx � cosx sinx

tan x sec2 x 2 sec2 x tan x

cot x � csc2 x 2 csc2 x cot x

secx secx tan x 2 sec3 x � secx

cscx � cscx cot x 2 csc3 x � cscx

sinhx coshx sinhx coshx

coshx sinhx coshx sinhx

arctan x 1
1+ x2

� 2x
(1+ x2)2

6x2� 2
(1+ x2)3

arcsinx 1p
1� x2

x
(1� x2)3=2

2x2� 1
(1� x2)5=2

arccosx � 1p
1� x2

� x
(1� x2)3=2 � 2x2 � 1

(1� x2)5=2

arccotx � 1
1+ x2

2x
(1+ x2)2 � 6x2 � 2

(1+ x2)3

Table 3.1: Some higher derivatives. We need assumptions as in Table 2.6.

We collect some examples in Table 3.1. There is nothing new to cal-
culating higher derivatives. You just repeat what you learned before. In
some calculations a few simpli�cations based on elementary arithmetic and
trigonometric identities (as you can �nd them in Section 5.5 on page 276)
have been employed. We don't enter all derivatives in the table. Some
expressions are so large that the table will not �t on the page if we do.
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In the table you see two functions which we have not introduced before.
These are the hyperbolic sine and cosine functions. Their de�nitions are

sinhx =
1
2

�
ex � e� x �

& coshx =
1
2

�
ex + e� x �

(3.4)

Exercise 106. Verify the formulas for the derivatives of the hyperbolic
functions in Table 3.1.

Exercise 107. Verify the identity

cosh2 x � sinh2 x = 1 :

The result in the previous exercise motivates the attribute `hyperbolic'.
A point ( u; v) on the hyperbola

u2 � v2 = 1

can be expressed as (� coshx; sinhx) for some x 2 (�1 ; 1 ).

Exercise 108. Find the second derivatives of the following functions:

(1) f (x) = 3 x3 + 5x2

(2) g(x) = sin 5x

(3) h(x) =
p

x2 + 2

(4) i (x) = e5x

(5) j (x) = tan x

(6) k(x) = cos(x2)

(7) l (x) = ln 2 x

(8) m(x) = ln( x2 + 3)

(9) n(x) = arctan 3 x

(10) o(x) = sec(x3)

(11) p(x) = ln 2(x + 4)

(12) q(x) = ecosx

(13) r (x) = ln(tan x)

(14) s(x) = ex2� 1

(15) t(x) = sin 3 x:

3.5 The Second Derivative and Concavity

Let us start out with two examples. In Figure 3.9 you see the graph of the
function

q(x) = x2 � 2x + 3 :

Consider two points on the graph, say (� 1; 6) and (1; 2), and connect them
by a line segment. As you see, the line segment lies above the graph. The
same is true, if we take any two points on the graph. This property of the
function will be called being concave up.

In contrast, if you consider the the graph of the function (see Figure 3.10)

g(x) = � x2 + 5x � 1
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Figure 3.9: q(x) = x2 � 2x + 3
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Figure 3.10: g(x) = � x2 + 5x � 1

and take any two points on its graph, say (0; � 1) and (3; 5), then the line
segment which connects the two points lies below the graph. This property
will be called being concave down.

We may use the monotonicity of the �rst derivative or information about
the second derivative of a function to �nd criteria which tell us that a func-
tion is concave up or down on an interval. We also study the corresponding
notion at a point.

Concavity on an Interval

First of all, let us de�ne the concept of being concave up or down on an
interval. Let ( a; f (a)) and (b; f (b)) be two distinct points on the graph of a
function f . The two point formula for a line provides us with an expression
for the line through these two point. For any x 2 (�1 ; 1 )

l (x) = f (a) +
f (b) � f (a)

b� a
(x � a):

The following de�nition expresses in mathematical notation that a function
is concave up (down) if every line segment connecting two points on its graph
lies above (below) the graph.

De�nition 3.28. Let f be a function which is de�ned on an intervalI . We
say that f is concave upon I if

f (c) < l (c)



158 CHAPTER 3. APPLICATIONS OF THE DERIVATIVE

for all a, b, c 2 I with a < c < b . Here l(x) is the line through (a; f (a)) and
(b; f (b)) . We say that f is concave downon I if

f (c) > l (c)

for all a, b, c 2 I with a < c < b .

In Figures 3.9 and 3.10 you saw the graph of a function which is concave
up and of a function which is concave down. We state a theorem which
provides you with assumptions under which a function is concave up or
down. We will not provide a proof of the theorem.

Theorem 3.29. Let f be a function which is de�ned on an interval I .

1. Suppose thatf (x) is di�erentiable on I . If f 0(x) is increasing on I ,
then f (x) is concave up onI . If f 0(x) is decreasing onI , then f (x) is
concave down onI .

2. Suppose thatf (x) is twice di�erentiable 8 on I . If f 00(x) > 0 for all x
in I , then f (x) is concave up onI . If f 00(x) < 0 for all x in I , then
f (x) is concave down onI .

3. More generally, the conclusions in (2) still hold if in each �nite interval
J � I there are only �nitely many points at which the assumption
f 00(x) > 0, resp. f 00(x) < 0, is not satis�ed.

Let us apply this theorem in a few examples.

Example 3.30. Con�rm the statements which we made in the prolog to
this section.

Solution: The second derivative of the function (see Figure 3.9)

q(x) = x2 � 2x + 3 is q00(x) = 2 ;

and this function is positive on the entire real line. Theorem 3.29 (2) says
that q is concave up on (�1 ; 1 ).

In comparison, the second derivative of the function

g(x) = � x2 + 5x � 1 is g00(x) = � 2;

and this function is negative on the entire real line. The theorem says that
g is concave down on (�1 ; 1 ). �

8Strictly speaking, so far we can consider being `twice di�erentiable' only for functions
which are de�ned on open intervals. More generally, we proceed as in Section 3.1. We say
that f (x) is twice di�erentiable on I , if f (x) extends to a function F (x) which is de�ned
on an open interval J which contains I , and F (x) is twice di�erentiable on J . The second
derivative will be unique at all points in I if I does not consist of exactly one point.
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Example 3.31. Show that the function

h(x) = ln x

is concave down on the interval (0; 1 ).
Solution: The �rst derivative of h(x) is h0(x) = 1 =x, and its second

derivative is (see Table 2.6)

h00(x) = � 1=x2:

Apparently h00(x) < 0 for all positive numbers x, so that we may conclude
from Theorem 3.29 (2) that ln x is concave down on its domain, (0; 1 ).

Another Solution: Our calculation shows that h0(x) is decreasing on
the interval (0 ; 1 ), because the �rst derivative h00(x) of h0(x) is negative on
this interval. Theorem 3.29 (1) implies that h(x) = ln x is concave down on
its domain, (0; 1 ). �

Example 3.32. Study the concavity properties of the exponential function

f (x) = ex :

Solution: We asserted the existence and di�erentiability of the exponen-
tial function in Theorems 1.12 on page 20 and 2.12 on page 52. Theorem 2.12
also says that f (x) = f 0(x). Applying the theorem twice we conclude that

f 00(x) = ex :

By de�nition, f (x) = f 00(x) > 0 for all real numbers x, see Theorem 1.12.
Theorem 3.29 (2) implies that the exponential function is concave up on its
entire domain, the interval ( �1 ; 1 ). �

Remark 16. Let f be a function which is de�ned on an interval I . Suppose
that its image is an interval J , and that f has an inverse, which we callg. If
f is concave up, theng is concave down, and vice versa. This follows from
a geometric argument. You should convince yourself that if a secant line is
above the graph, and you reect the picture at the diagonal (that is how
to get the graph of the inverse function) then, in the reected picture, the
secant line will be below the graph. We could have used this argument to
exploit the statement that the logarithm function is concave down to deduce
that the exponential function is concave up.

Exercise 109. In each of the Figures 3.11 and 3.12 you see the graphs of
a function f and its second derivativef 00. For each pair
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1. decide which graph belongs belongs to the function and which one to
its second derivative.

2. determine (approximately) intervals on which the second derivative is
positive, resp., negative.

3. determine (approximately) intervals on which the function is concave
up, resp., concave down.
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Figure 3.11: Graphs off and f 00.
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Figure 3.12: Graphs off and f 00.

Exercise 110. Discuss the concavity properties of the functions

(1) f (x) = x2 � 5x + 8 and (2) g(x) =
p

3x � 1:

So far we applied Theorem 3.29 (2) to obtain conclusions. Let us look
at some examples where we apply condition (3).

Example 3.33. Study the concavity properties of the function

p(x) = x3 � 3x2 � 9x + 3 :

Solution: You �nd the graph of this function in Figure 3.7, and we
discussed its monotonicity properties in Example 3.22 on page 150. An easy
calculation provides us with the second derivative of this function:

p00(x) = 6 x � 6 = 6(x � 1):
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We see that p00(x) > 0 for x 2 (1; 1 ), and p00(x) < 0 for x 2 (�1 ; 1). This
means that p00(x) > 0 for all x 2 [1; 1 ) with only one exception, x = 1.
Theorem 3.29 (3) tells us that p(x) is concave up on the interval [1; 1 ).
Similarly, p00(x) < 0 for x 2 [�1 ; 1) with only one exception, x = 1. One
deduces that f (x) is concave down on the interval (�1 ; 1]. �

Example 3.34. Study the monotonicity and concavity properties of the
tangent function tan x on the interval ( � �= 2; �= 2).

Solution: You �nd the �rst and second derivative of the function tan x
in Table 2.6 on page 136:

tan0x = sec2 x & tan 00x = 2 sec2 x tan x:

By de�nition, sec 2 x > 0 on the interval (� �= 2; �= 2). This means that tan x
is increasing on (� �= 2; �= 2), see Theorem 3.12 on page 144.

In addition, tan x < 0 for x 2 (� �= 2; 0) and tan x > 0 for x 2 (0; �= 2).
This means that tan00x < 0 for x 2 (� �= 2; 0) and tan00x > 0 for x 2
(0; �= 2). Theorem 3.29 (3) implies that tanx is concave down on (� �= 2; 0]
and concave up on [0; �= 2). Compare Figures 5.11 and 5.12 to con�rm our
conclusions visually. �

Example 3.35. Find intervals on which the function f (x) = sin x is con-
cave up or concave down.

Solution: The sine function is de�ned and twice di�erentiable on the
interval ( �1 ; 1 ). Its second derivative is (see Table 3.1)

f 00(x) = � sinx:

You may use the graph shown in Figure 5.9, or the geometry of the unit
circle, to conclude that sinx > 0 on intervals of the form (2n�; (2n + 1) � )
and sinx < 0 on intervals of the form ((2n+1) �; 2n� ). Here n is an arbitrary
integer (whole number). We conclude that sin00(x) < 0 on all intervals of
the form (2n�; (2n + 1) � ) and that sin x is concave down on the intervals
[2n�; (2n + 1) � ]. Similarly, sin x is concave up on all intervals of the form
[(2n + 1) �; 2n� ]. �

Remark 17. Let us discuss the statement about the poverty rate which we
quoted in the beginning of the chapter:\the rate at which the rate of poverty
is increasing is decreasing." You may view it politically. The speech writer
carefully designed a sentence which was not untrue, and which ended on a
positive note. Something about the poverty rate was decreasing. We have
encounter functions, like ln, which are increasing and concave down (the rate
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at which they increase decreases). These functions are not even bounded,
so arbitrarily large values are obtained as we wait long enough. That would
be rather bad news, in case the function described the poverty rate. The
question is whether the relevant political decisions and current social and
economical conditions e�ect the �rst or the second derivative of the function
P(t), the poverty rate as a function of time. If P00(t) � � A for some positive
number A for a su�ciently long time, then P0(t) will continue to decrease
at least at rate A and eventually become negative, so that the poverty rate
itself would start decreasing. Maybe a good policy will be designed to have
an e�ect on the second derivative of a quantity which needs change. It may
not bring immediate relief, but eventually lasting improvement. A change in
the �rst derivative, without control of the second one, may bring temporary
relief without solving the long term problem.

Exercise 111. Find intervals on which the following functions are concave
up, resp., concave down.

1. f (x) = x3 � 4x2 + 8x � 7

2. g(x) = x4 + 2x3 � 3x2 + 5x � 2

3. h(x) = x + 1=x

4. i (x) = 2 x4 � x2

5. j (x) = x=(x2 � 1)

6. k(x) = 2 cos2 x � x2 for x 2 [0; 2� ].

Concavity at a Point

The notion of being concave up or down was de�ned for functions which are
de�ned on intervals. Still, we got a picture how the function has to look
like near a point, and this is the behavior which we like to capture in a
de�nition.

De�nition 3.36. Let f be a function and c an interior point 9 of its do-
main. We say that f is concave up, resp., concave down, at c if there exists
an open interval I and a line10 l such that l (c) = f (c) and

f (x) > l (x), resp., f (x) < l (x);
9The idea of an interior point was de�ned in De�nition 2.1 on page 42.

10 A line l , as required in this de�nition, is called a support line. In general, there could
be more than one such line, but if the function is di�erentiable at c, then the support line
is unique.
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for all x 2 I with x 6= c.

In other words, we are asking for a linel(x), which agrees with f at c,
and on some open interval aroundc the function is larger (resp., smaller)
that l (x). The inequality is required to be strict for x 6= c. You see this
situation illustrated in two generic pictures in Figures 3.13 and 3.14. One
shows a function which is concave up at the indicated point, one shows a
function which is concave down.
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Figure 3.13: Concave up at�
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Figure 3.14: Concave down at�

There are two obvious questions. How can we detect whether a function
is concave up or down at a point? What is the slope of the linel referred to
in the de�nition? The answer to both question is given in our next theorem.

Theorem 3.37. Let f be a function andc an interior point of its domain.

1. If f 0 is increasing at c or if f 00(c) > 0, then f is concave up atc.

2. If f 0 is decreasing atc or if f 00(c) < 0, then f is concave down atc.

3. If f is di�erentiable and concave up or down atc, then there is only
one line which plays the role ofl (x) in De�nition 3.36, and this line
is the tangent line to the graph off at c.

We can use the theorem to check the concavity of a function at a point.
Just calculate the second derivative of the function at the point in question,
and see whether it is positive or negative. If this second derivative at the
point should turn out to be 0, then the theorem is inconclusive. It does not
tell us anything.
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Remark 18. Item (3) in Theorem 3.37 describes the situation alluded to
in Example 2 on page 40. In this case we can �nd the tangent line to a
graph by holding a ruler against it.

Example 3.38. Check the concavity of

f (x) = x5 � 7x4 + 2x3 + 2x2 � 5x + 4

at x = 2.
Solution: We calculate the second derivative off :

f 00(x) = 20x3 � 84x2 + 12x + 4 :

Evaluated at x = 2 we �nd f 00(2) = � 148 < 0. So the function is concave
down at x = 2 �

Exercise 112. Decide at which points on the real line the following func-
tions are concave up, resp., concave down:

(a) f (x) = x3 � 2x2 + 5x � 3.

(b) f (x) = x4 + x3 � 3x2 + 6x + 1.

To relate concavity properties on an interval to those at each point in
the interval we state, without proof, the following theorem.

Theorem 3.39. Let f be a function which is de�ned on an open interval
(a; b). Then f is concave up (resp., down) on(a; b) if and only if f is concave
up (resp., down) at each point in (a; b).

3.6 Local Extrema and Inection Points

We are going to discuss two types of points which are particularly important
in the discussion of (graphs of) functions. As we like to apply local properties
of the function, we focus on interior points is the domain of the function.

De�nition 3.40 (Local Extrema). Let f be a function andc an interior
point in its domain 11. We say that f has alocal maximum, resp. minimum,
at c if

f (c) � f (x), resp. f (c) � f (x);

for all x in some open interval I around c. In this case we callf (c) a local
maximum, resp. minimum, of f . A local extremum is a local maximum or
minimum.

11 According to De�nition 2.1 on page 42 this means that f (x) is de�ned for all x in
some open interval around c.
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In other words, f has a local maximum of f (c) at c if, on some open
interval around c, f (c) is the largest value assumed by the function. We will
study tests which allow us �nd local extrema soon. For now, we content
ourselves with an example which can be checked with bare hands.

Example 3.41. Show that the function

f (x) = x2 + ax + b

has a local minimum at c = � a=2.
Solution: Completing squares, we �nd

f (x) =
�

x +
a
2

� 2
+

�
b�

a2

4

�
:

The �rst expression after the equal sign in non-negative and the second one
is a constant. This means that

f (x) � f (� a=2) =
�

b�
a2

4

�
;

and that f has a local minimum of (b� a2=4) at � a=2.
E.g., the function

f (x) = x2 + 2x � 1

has a local minimum of f (� 1) = � 2 at x = � 1. This situation is shown in
Figure 3.15. �

Exercise 113. Find the local extrema of the functions:

(a) p(x) = x2 + 3x � 2.

(b) q(x) = 3 x2 � 2x + 5.

(c) r (x) = � x2 + x + 1.

De�nition 3.42 (Inection Points). Let f be a function and c an inte-
rior point of its domain. We call c an inection point of f if the concavity
of f changes atc. I.e., for some numbersa and b with a < c < b , we have
that f is concave up on the interval(a; c] and concave down on[c; b), or vice
versa.

Soon we will develop tests which detect inections points. For the mo-
ment we just give an example.



166 CHAPTER 3. APPLICATIONS OF THE DERIVATIVE

-2 -1 1 2

-2

-1

1

2

3

Figure 3.15: A local minimum
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Figure 3.16: An Inection Point

Example 3.43. Show that the function

f (x) = tan x

has an inection point at c = 0.
Solution: In Example 3.34 on page 161 we determined intervals in which

the tangent function is concave up and down. Speci�cally, tanx is concave
down on the interval (� �= 2; 0] and concave up on the interval [0; �= 2). So
the concavity changes atx = 0 and that means that there is an inection
point at c = 0. You see the graph of this function in Figure 3.16. �

3.7 The First Derivative Test

In this section we discuss what is called the �rst derivative test. It does not
detect at which points a function has local extrema, but it tells us where
a function does not have a local extremum. Potentially, we would have
to check every point in the domain of a function to decide whether there
is a local extremum at this point, so that this could be an in�nite task.
Typically, the test will exclude all but a �nite number of points, so that the
in�nite task has been reduced to a �nite one.

Theorem 3.44 (First Derivative Test). Let f be a function and c an
interior point of its domain. If f is di�erentiable at c and f 0(c) 6= 0 , then
f does not have a local extremum atc. In other words, if f has a local
extremum at c, then f is either not di�erentiable at c or f 0(c) = 0 .
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To have an abbreviation for the points which are recognized as important
in this theorem, it is customary to say:

De�nition 3.45 (Critical Points). Let f be a function andc an interior
point of its domain. We say that c is a critical point of f if f is di�erentiable
at c and f 0(c) = 0 , or if f is not di�erentiable at c.

The �rst derivative test provides us with a necessary condition. If a
function has a local extremum atc, then c is a critical point of the function.
No local extrema can occur at points which are not critical. The test does
not give a su�cient condition for a local extremum. If c is a critical point
of the function, then the function need not have a local extremum atc. It
makes sense to introduce one more word.

De�nition 3.46 (Saddle Points). Let f be a function and c an interior
point of its domain. We say that c is a saddle point of f if f is di�erentiable
at c and f 0(c) = 0 , but f does not have a local extremum atc.

E.g., the function f (x) = x3 has a saddle point atx = 0. This saddle
point is shown in Figure 3.18. For a discussion see Example 3.50.

Proof of the First Derivative Test. Suppose thatf is di�erentiable at c and
f 0(c) > 0. Proposition 3.27 on page 154 tells us that there exists some
positive number d, such that f (x) < f (c) for all x 2 (c � d; c), and f (x) >
f (c) for all x 2 (c; c+ d). So, there are pointsx to the left of and arbitrarily
close toc such that f (x) < f (c), and there are points x to the right of and
arbitrarily close to c such that f (x) > f (c). This means, by de�nition, that f
does not have a local extremum atc. If f 0(x) < 0, then the same argument
applies with inequalities reversed. If f 0(c) 6= 0, then either f 0(c) > 0 or
f 0(c) < 0, and in neither case we have an extremum atc.

Example 3.47. Find the local extrema of the function

q(x) = x2 � 2x + 3 :

Solution: The function is di�erentiable for all real numbers x, and

q0(x) = 2 x � 2 = 2(x � 1):

So q0(x) 6= 0 if x 6= 1. The �rst derivative test tells us that q does not have
a local extremum at x if x 6= 1. The only point at which we can have a local
extremum, i.e., the only critical point, is x = 1. If we write the function in
the form

q(x) = ( x � 1)2 + 2 ;
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then we see thatq does indeed that a local minimum atx = 1. You should
con�rm this result by having a look at Figure 3.17, where this function is
graphed. �
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Figure 3.17: A local minimum
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Figure 3.18: A saddle point

Example 3.48. Show that neither the exponential function nor the loga-
rithm function have local extrema.

Solution: To verify this, remember that the derivative of f (x) = ex is
f 0(x) = ex . This function is nowhere zero (see Theorem 1.12). Thus it has
no critical point. The �rst derivative test tells us that the function has no
local extrema.

A similar argument applies to the natural logarithm function, which
is de�ned on the interval (0 ; 1 ). Its derivative is ln 0x = 1=x, and this
function is nowhere zero on (0; 1 ). Hence the natural logarithm function
has no critical points and no local extrema. �

Example 3.49. Find the local extrema of f (x) = sin x.
Solution: As we have shown previously,f 0(x) = cos x, and f 0(x) = 0

if and only if x is of the form n� + �= 2, where n is an integer. These are
the only critical points, and the only points where sin x can have a local
extremum.

Observe that sin(n� + �= 2) = 1 if n is even, and that sin(n� + �= 2) = � 1
if n is odd. For all x not of this form we have that � 1 < sinx < 1. It follows
sinx as local maxima at the points of the formn� + �= 2 for n even and local
minima for n odd. �
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Example 3.50. Show that the function

g(x) = x3

has no local extrema, and that it has a saddle point atx = 0.
Solution: To see this, we di�erentiate g. The derivative is g0(x) = 3 x2,

and this function is zero only whenx = 0. The only critical point of g is at
x = 0. The �rst derivative test tells us that the only point at which we can
have a local extremum isx = 0. Our task of searching for local extrema has
been substantially reduced. There is only one point left at which we have
to have a closer look at the function.

Obviously, g(x) > 0 for all x 2 (0; 1 ) and g(x) < 0 for all x 2 (�1 ; 0).
This means that there is no local extremum at x = 0. As g0(0) = 0 and
there is no local extremum at x = 0, the function has a saddle point at this
point. �

Let us formulate a criterion which, based on �rst derivative information,
con�rms that a function has a local extremum at a point c. It gives us a
su�cient condition for a local extremum to exist. Suppose c is an interior
point of the domain of a function f , and suppose that for somed > 0 the
function is increasing on (c� d; c] and decreasing on [c; c+ d). Then f has a
local maximum at c. Taking advantage of the information provided by the
�rst derivative, we obtain the following test.

Theorem 3.51. Supposef is a function which is de�ned and di�erentiable
on (c� d; c+ d) for somed > 0. If f 0(x) > 0 for all x 2 (c� d; c) and f 0(x) < 0
for all x 2 (c; c+ d), then f has a local maximum atc. If f 0(x) < 0 for all
x 2 (c� d; c) and f 0(x) > 0 for all x 2 (c; c+ d), then f has a local minimum
at c.

Let us illustrate the use of the theorem with an example. You may revisit
the example once we discussed the second derivative test to �nd a simpli�ed
argument for our conclusions.

Example 3.52. Find the local extrema of the function

f (x) = x3 � 3x2 + 2x + 2 :

Solution: We di�erentiate the function, �nd the roots of the derivative,
and factor it, so that it is easy to see wheref 0 is positive and negative.

f 0(x) = 3 x2 � 6x + 2 = 3

"

x �

 

1 +

p
3

3

!# "

x �

 

1 �

p
3

3

!#
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Figure 3.19: f (x) = x3 � 3x2 +
2x + 2
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Figure 3.20: f 0(x) = 3 x2 � 6x + 2

The expressions within the square brackets are lines. The �rst one of them
is negative on the interval (�1 ; 1 +

p
3=3) and positive on (1 +

p
3=3; 1 ).

The second one is negative on the interval (�1 ; 1 �
p

3=3) and positive on
(1 �

p
3=3; 1 ). Taken together, f 0(x) = 0 if x = 1 �

p
3=3, f 0(x) is positive

on the intervals (�1 ; 1 �
p

3=3) and (1 +
p

3=3; 1 ), and f 0(x) is negative
on the interval (1 �

p
3=3; 1 +

p
3=3). You can see graphs off and f 0 in

Figures 3.19 and 3.20
With this we may conclude that x = 1 �

p
3=3 are the only critical points

of f , and that these are the only points where a local extremum can occur.
Based on the sign off 0(x) on intervals to the left and right of these two
critical points we see that f has a local maximum at x = 1 �

p
3=3 and a

local minimum at x = 1 +
p

3=3. �

Exercise 114. Find the local extrema of the following function:

(1) f (x) =
x2 + 3x
x � 1

(2) g(x) = sin 2x + 2 sin x for x 2 [0; 2� ]:

Hint: We discussed the monotonicity properties of these functions in Exam-
ples 3.23 and 3.24.

Exercise 115. Find the local extrema of the following function:

(a) f (x) = 3 x2 + 5x + 7

(b) f (x) = x3 � 3x2 + 6
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(c) f (x) = ( x + 3) =(x � 7)

(d) f (x) = x + 1=x

(e) f (x) = x3(1 + x)

(f) f (x) = x=(1 + x2)

(g) f (x) = cos 2x + 2 cosx for 0 � x � 2�

(h) f (x) = sin 2 x �
p

3 sinx for 0 � x � 2� .

Hint: You discussed the monotonicity properties of these functions before.

3.8 The Second Derivative Test

The second derivative test provides us with a su�cient criterion for an ex-
tremum of a function at a point. When its assumptions are satis�ed at a
point c, then the function has a local extremum at this point. We can also
tell whether it is a maximum or a minimum. Here is the test:

Theorem 3.53 (Second Derivative Test). Let f be a function andc an
interior point in its domain. Assume also that f 0(c) and f 00(c) exist and that
f 0(c) = 0 . If f 00(c) > 0, then f has a local minimum at c. If f 00(c) < 0, then
f has a local maximum atc.

Stated di�erently the theorem says: If f has a critical point c, and if f 00(c)
exists and is nonzero, thenf has a local extremum atc. The sign of f 00(c)
tells us whether the extremum is a maximum or a minimum. No statement
is made in the theorem whenf 00(c) = 0. In fact, if f 0(c) = f 00(c) = 0, then
there may or may not be a local extremum atc. Furthermore, the function
f can have a local extremum atc, and the assumptions of the test are not
satis�ed. In this sense, the test provides us with a su�cient condition for
the existence of a local extremum at a point. It does not provide us with a
necessary condition.

The second derivative test is very easy to apply. If we only use �rst
derivative techniques to detect local extrema, then we have to decide about
the sign of the �rst derivative on intervals on both sides of a critical point.
This can be a rather unpleasant task. In comparison, if we apply the second
derivative test for this purpose, then we only have to evaluate the second
derivative of a function at a critical point to �nd the desired information.
Let us look at some examples.
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E.g., if f (u) = u2 � 1 and g(x) = x + 1, then

(f � g)(x) = f (g(x)) = f (x + 1) = ( x + 1) 2 � 1 = x2 + 2x:

If f (x) = sin x and g(x) = x2 + 1, then we �rst map x to x2 + 1, and then
we take the sine of the result. We get

(f � g)(x) = sin( x2 + 1) :

Remark 32. We used the symbol \� " in (5.36) for reasons of clarity, but
we will usually avoid it by writing down the right hand side of this equation.

Our �nal method of constructing new functions from old ones is to take
the inverse of a given function. This topic was discussed with several exam-
ples in Section 5.6. Another important example of this method is discussed
in Section 1.3. Nevertheless, let us give one more example. In Figure 5.26
you see a graph of the cosine function, where we used [0; � ] as domain. We
also specify the range as [� 1; 1]. A look at the graph, or a geometric argu-
ment at the unit circle, will convince you that f (x) = cos(x) is 1-1, onto,
and decreasing. In particular, with this domain and range cosx has an in-
verse. In Figure 5.27 you see the graph of this inverse function. It is called
the arccosine function, and the mathematical abbreviation for it is arccos.
It is the new function which we obtained from the cosine function (with the
speci�ed domain and range) by taking its inverse.
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Figure 5.26: cos on [0; � ]

-1 -0.5 0.5 1

0.5

1

1.5

2

2.5

3

Figure 5.27: arccos on [� 1; 1]



294 CHAPTER 5. PREREQUISITES FROM PRECALCULUS


